MulOpposite of coalgebras #
Suppose R is a commutative semiring, and A is an R-coalgebra,
then Aแตแตแต is an R-coalgebra, where we define the comultiplication and counit maps naturally.
noncomputable instance
MulOpposite.instCoalgebraStruct
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[AddCommMonoid A]
[Module R A]
[CoalgebraStruct R A]
:
Equations
theorem
MulOpposite.comul_def
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[AddCommMonoid A]
[Module R A]
[CoalgebraStruct R A]
:
CoalgebraStruct.comul = TensorProduct.map โ(opLinearEquiv R) โ(opLinearEquiv R) โโ CoalgebraStruct.comul โโ โ(opLinearEquiv R).symm
theorem
MulOpposite.counit_def
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[AddCommMonoid A]
[Module R A]
[CoalgebraStruct R A]
:
noncomputable instance
MulOpposite.instCoalgebra
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[AddCommMonoid A]
[Module R A]
[Coalgebra R A]
: