Documentation

Mathlib.RingTheory.Congruence.Hom

Congruence relations and ring homomorphisms #

This file contains elementary definitions involving congruence relations and morphisms for rings and semirings

Main definitions #

Tags #

congruence, congruence relation, quotient, quotient by congruence relation, ring, quotient ring

def RingCon.ker {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] (f : M →+* N) :

The kernel of a ring homomorphism as a ring congruence relation.

Equations
    Instances For
      theorem RingCon.comap_bot {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] (f : M →+* N) :
      @[simp]
      theorem RingCon.ker_apply {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] (f : M →+* N) {x y : M} :
      (ker f) x y f x = f y

      The definition of the ring congruence relation defined by a ring homomorphism's kernel.

      theorem RingCon.ker_mk'_eq {M : Type u_1} [NonAssocSemiring M] (c : RingCon M) :
      ker c.mk' = c

      The kernel of the quotient map induced by a ring congruence relation c equals c.

      theorem RingCon.ker_comp {M : Type u_1} {N : Type u_2} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring N] [NonAssocSemiring P] {f : M →+* N} {g : N →+* P} :
      ker (g.comp f) = (ker g).comap f
      theorem RingCon.comap_eq {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] {c : RingCon M} {g : N →+* M} :
      c.comap g = ker (c.mk'.comp g)
      def RingCon.congr {M : Type u_1} [NonAssocSemiring M] {c d : RingCon M} (h : c = d) :

      Makes an isomorphism of quotients by two ring congruence relations, given that the relations are equal.

      Equations
        Instances For
          @[simp]
          theorem RingCon.congr_mk {M : Type u_1} [NonAssocSemiring M] {c d : RingCon M} (h : c = d) (a : M) :
          (RingCon.congr h) a = a
          def RingCon.mapGen {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] {c : RingCon M} (f : MN) :

          Given a function f, the smallest ring congruence relation containing the binary relation on f's image defined by 'x ≈ y iff the elements of f⁻¹(x) are related to the elements of f⁻¹(y) by a ring congruence relation c.'

          Equations
            Instances For
              theorem RingCon.mapGen_eq_map_of_surjective {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] {c : RingCon M} (f : M →+* N) (h : ker f c) (hf : Function.Surjective f) :
              (mapGen f) = Relation.Map c f f

              If c is a ring congruence on M, then the smallest ring congruence relation on N deduced from c by a ring homomorphism from M to N is the relation deduced from c.

              theorem RingCon.mapGen_apply_apply_of_surjective {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] {c : RingCon M} (f : M →+* N) (h : ker f c) (hf : Function.Surjective f) {x y : M} :
              (mapGen f) (f x) (f y) c x y

              Given a ring congruence relation c on a semiring M, the order-preserving bijection between the set of ring congruence relations containing c and the ring congruence relations on the quotient of M by c.

              Equations
                Instances For
                  def RingCon.lift {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] (c : RingCon M) (f : M →+* P) (H : c ker f) :

                  The homomorphism on the quotient of a ring by a congruence relation c induced by a homomorphism constant on the equivalence classes of c.

                  Equations
                    Instances For
                      theorem RingCon.lift_mk' {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {c : RingCon M} {f : M →+* P} (H : c ker f) (x : M) :
                      (c.lift f H) (c.mk' x) = f x

                      The diagram describing the universal property for quotients of ring commutes.

                      @[simp]
                      theorem RingCon.lift_coe {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {c : RingCon M} {f : M →+* P} (H : c ker f) (x : M) :
                      (c.lift f H) x = f x

                      The diagram describing the universal property for quotients of rings commutes.

                      @[simp]
                      theorem RingCon.lift_comp_mk' {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {c : RingCon M} {f : M →+* P} (H : c ker f) :
                      (c.lift f H).comp c.mk' = f

                      The diagram describing the universal property for quotients of rings commutes.

                      theorem RingCon.lift_apply_mk' {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {c : RingCon M} (f : c.Quotient →+* P) :
                      c.lift (f.comp c.mk') = f

                      Given a homomorphism f from the quotient of a ring by a ring congruence relation, f equals the homomorphism on the quotient induced by f composed with the natural map from the ring to the quotient.

                      theorem RingCon.Quotient.hom_ext {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {c : RingCon M} {f g : c.Quotient →+* P} (h : f.comp c.mk' = g.comp c.mk') :
                      f = g

                      Homomorphisms on the quotient of a ring by a ring congruence relation are equal if they are equal on elements that are coercions from the ring.

                      theorem RingCon.Quotient.hom_ext_iff {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {c : RingCon M} {f g : c.Quotient →+* P} :
                      f = g f.comp c.mk' = g.comp c.mk'
                      theorem RingCon.lift_unique {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {c : RingCon M} {f : M →+* P} (H : c ker f) (g : c.Quotient →+* P) (Hg : g.comp c.mk' = f) :
                      g = c.lift f H

                      The uniqueness part of the universal property for quotients of rings.

                      theorem RingCon.lift_surjective_iff {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {c : RingCon M} {f : M →+* P} {h : c ker f} :

                      Surjective ring homomorphisms constant on the equivalence classes of a ring congruence relation induce a surjective homomorphism on the quotient.

                      theorem RingCon.lift_surjective_of_surjective {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {c : RingCon M} {f : M →+* P} (h : c ker f) (hf : Function.Surjective f) :

                      Surjective ring homomorphisms constant on the equivalence classes of a ring congruence relation induce a surjective homomorphism on the quotient.

                      theorem RingCon.lift_injective_iff {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {c : RingCon M} {f : M →+* P} {h : c ker f} :

                      Given a ring homomorphism f from M to P whose kernel contains c, the lift of M to P is injective iff ker f = c.

                      theorem RingCon.ker_eq_lift_of_injective {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {c : RingCon M} {f : M →+* P} (H : c ker f) (h : Function.Injective (c.lift f H)) :
                      ker f = c

                      Given a ring homomorphism f from M to P, the kernel of f is the unique ring congruence relation on M whose induced map from the quotient of M to P is injective.

                      def RingCon.kerLift {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] (f : M →+* P) :

                      The homomorphism induced on the quotient of a ring by the kernel of a ring homomorphism.

                      Equations
                        Instances For
                          theorem RingCon.kerLift_mk {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {f : M →+* P} (x : M) :
                          (kerLift f) x = f x

                          The diagram described by the universal property for quotients of rings, when the ring congruence relation is the kernel of the homomorphism, commutes.

                          A ring homomorphism f induces an injective homomorphism on the quotient by f's kernel.

                          def RingCon.map {M : Type u_1} [NonAssocSemiring M] (c d : RingCon M) (h : c d) :

                          Given ring congruence relations c, d on a ring such that d contains c, d's quotient map induces a homomorphism from the quotient by c to the quotient by d.

                          Equations
                            Instances For
                              theorem RingCon.map_apply {M : Type u_1} [NonAssocSemiring M] {c d : RingCon M} (h : c d) (x : c.Quotient) :
                              (c.map d h) x = (c.lift d.mk' ) x

                              Given ring congruence relations c, d on a ring such that d contains c, the definition of the homomorphism from the quotient by c to the quotient by d induced by d's quotient map.

                              @[simp]
                              theorem RingCon.rangeS_lift {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {c : RingCon M} {f : M →+* P} (H : c ker f) :
                              (c.lift f H).rangeS = f.rangeS

                              Given a congruence relation c on a semiring and a homomorphism f constant on the equivalence classes of c, f has the same image as the homomorphism that f induces on the quotient.

                              @[simp]
                              theorem RingCon.rangeS_kerLift {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] {f : M →+* P} :

                              Given a ring homomorphism f, the induced homomorphism on the quotient by f's kernel has the same image as f.

                              noncomputable def RingCon.quotientKerEquivRangeS {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] (f : M →+* P) :

                              The first isomorphism theorem for semirings.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem RingCon.coe_quotientKerEquivRangeS_mk {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] (f : M →+* P) (x : M) :
                                  ((quotientKerEquivRangeS f) x) = f x
                                  def RingCon.quotientKerEquivOfRightInverse {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] (f : M →+* P) (g : PM) (hf : Function.RightInverse g f) :

                                  The first isomorphism theorem for semirings in the case of a homomorphism with right inverse.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem RingCon.quotientKerEquivOfRightInverse_apply {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] (f : M →+* P) (g : PM) (hf : Function.RightInverse g f) (x : (ker f).Quotient) :
                                      noncomputable def RingCon.quotientKerEquivOfSurjective {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] (f : M →+* P) (hf : Function.Surjective f) :

                                      The first isomorphism theorem for rings in the case of a surjective homomorphism.

                                      For a computable version, see RingCon.quotientKerEquivOfRightInverse.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem RingCon.quotientKerEquivOfSurjective_mk {M : Type u_1} {P : Type u_3} [NonAssocSemiring M] [NonAssocSemiring P] (f : M →+* P) (hf : Function.Surjective f) (x : M) :
                                          noncomputable def RingCon.comapQuotientEquivOfSurj {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] (c : RingCon M) (f : N →+* M) (hf : Function.Surjective f) {d : RingCon N} (hcd : d = c.comap f) :

                                          A surjective ring homomorphism f : M →+* N induces a ring equivalence d.Quotient ≃+* c.Quotient, whenever c : RingCon M and d : RingCon N are such that d = c.comap f.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem RingCon.comapQuotientEquivOfSurj_mk {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] (c : RingCon M) {f : N →+* M} (hf : Function.Surjective f) {d : RingCon N} (hcd : d = c.comap f) (x : N) :
                                              (c.comapQuotientEquivOfSurj f hf hcd) x = (f x)
                                              @[simp]
                                              theorem RingCon.comapQuotientEquivOfSurj_symm_mk {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] (c : RingCon M) {f : N →+* M} (hf : Function.Surjective f) {d : RingCon N} (hcd : d = c.comap f) (x : N) :
                                              (c.comapQuotientEquivOfSurj f hf hcd).symm (f x) = x
                                              @[simp]
                                              theorem RingCon.comapQuotientEquivOfSurj_symm_mk' {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] (c : RingCon M) (f : N ≃+* M) {d : RingCon N} (hcd : d = c.comap f) (x : N) :
                                              (c.comapQuotientEquivOfSurj f hcd).symm f x = x

                                              This version infers the surjectivity of the function from a RingEquiv function

                                              noncomputable def RingCon.comapQuotientEquivRangeS {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] (c : RingCon M) (f : N →+* M) {d : RingCon N} (hcd : d = c.comap f) :

                                              The second isomorphism theorem for semirings.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem RingCon.comapQuotientEquivRangeS_mk {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] (c : RingCon M) (f : N →+* M) {d : RingCon N} (hcd : d = c.comap f) (x : N) :
                                                  (c.comapQuotientEquivRangeS f hcd) x = (f x),
                                                  @[simp]
                                                  theorem RingCon.comapQuotientEquivRangeS_symm_mk {M : Type u_1} {N : Type u_2} [NonAssocSemiring M] [NonAssocSemiring N] (c : RingCon M) (f : N →+* M) {d : RingCon N} (hcd : d = c.comap f) (x : N) :
                                                  (c.comapQuotientEquivRangeS f hcd).symm (f x), = x

                                                  The third isomorphism theorem for (semi-)rings.

                                                  Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem RingCon.quotientQuotientEquivQuotient_coe_coe {M : Type u_1} [NonAssocSemiring M] (c d : RingCon M) (h : c d) (x : M) :
                                                      (c.quotientQuotientEquivQuotient d h) x = x
                                                      theorem RingCon.range_mk' {M : Type u_1} [Ring M] {c : RingCon M} :
                                                      @[simp]
                                                      theorem RingCon.range_lift {M : Type u_1} {P : Type u_3} [Ring M] [Ring P] {c : RingCon M} {f : M →+* P} (H : c ker f) :
                                                      (c.lift f H).range = f.range

                                                      Given a congruence relation c on a ring and a homomorphism f constant on the equivalence classes of c, f has the same image as the homomorphism that f induces on the quotient.

                                                      @[simp]
                                                      theorem RingCon.kerLift_range_eq {M : Type u_1} {P : Type u_3} [Ring M] [Ring P] {f : M →+* P} :

                                                      Given a ring homomorphism f, the induced homomorphism on the quotient by f's kernel has the same image as f.

                                                      noncomputable def RingCon.quotientKerEquivRange {M : Type u_1} {P : Type u_3} [Ring M] [Ring P] (f : M →+* P) :

                                                      The first isomorphism theorem for rings.

                                                      Equations
                                                        Instances For
                                                          noncomputable def RingCon.comapQuotientEquivRange {M : Type u_1} {N : Type u_2} [Ring M] [Ring N] (c : RingCon M) (f : N →+* M) {d : RingCon N} (hcd : d = c.comap f) :

                                                          The second isomorphism theorem for rings.

                                                          Equations
                                                            Instances For
                                                              theorem RingCon.comapQuotientEquivRange_mk {M : Type u_1} {N : Type u_2} [Ring M] [Ring N] (c : RingCon M) (f : N →+* M) {d : RingCon N} (hcd : d = c.comap f) (x : N) :
                                                              (c.comapQuotientEquivRange f hcd) x = (f x),
                                                              @[simp]
                                                              theorem RingCon.coe_comapQuotientEquivRange_mk {M : Type u_1} {N : Type u_2} [Ring M] [Ring N] (c : RingCon M) (f : N →+* M) {d : RingCon N} (hcd : d = c.comap f) (x : N) :
                                                              ((c.comapQuotientEquivRange f hcd) x) = (f x)
                                                              @[simp]
                                                              theorem RingCon.comapQuotientEquivRange_symm_mk {M : Type u_1} {N : Type u_2} [Ring M] [Ring N] (c : RingCon M) (f : N →+* M) {d : RingCon N} (hcd : d = c.comap f) (x : N) :
                                                              (c.comapQuotientEquivRange f hcd).symm (f x), = x
                                                              def RingCon.congrₐ {M : Type u_1} (R : Type u_4) [CommSemiring R] [Semiring M] [Algebra R M] {c d : RingCon M} (h : c = d) :

                                                              Makes an algebra isomorphism of quotients by two ring congruence relations, given that the relations are equal.

                                                              Equations
                                                                Instances For
                                                                  theorem RingCon.congrₐ_mk {M : Type u_1} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] {c d : RingCon M} (h : c = d) (a : M) :
                                                                  (RingCon.congrₐ R h) a = a
                                                                  theorem RingCon.range_mkₐ {M : Type u_1} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] {c : RingCon M} :
                                                                  def RingCon.liftₐ {M : Type u_1} {P : Type u_3} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring P] [Algebra R P] (c : RingCon M) (f : M →ₐ[R] P) (H : c ker f.toRingHom) :

                                                                  The algebra homomorphism on the quotient of an algebra by a congruence relation c induced by an algebra homomorphism constant on the equivalence classes of c.

                                                                  Equations
                                                                    Instances For
                                                                      theorem RingCon.liftₐ_coe_toRingHom {M : Type u_1} {P : Type u_3} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring P] [Algebra R P] (c : RingCon M) (f : M →ₐ[R] P) (H : c ker f.toRingHom) :
                                                                      (c.liftₐ f H).toRingHom = c.lift (↑f) H
                                                                      theorem RingCon.coe_liftₐ {M : Type u_1} {P : Type u_3} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring P] [Algebra R P] (c : RingCon M) (f : M →ₐ[R] P) (H : c ker f.toRingHom) :
                                                                      (c.liftₐ f H) = (c.lift (↑f) H)
                                                                      @[simp]
                                                                      theorem RingCon.liftₐ_mk {M : Type u_1} {P : Type u_3} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring P] [Algebra R P] (c : RingCon M) (f : M →ₐ[R] P) (H : c ker f.toRingHom) (x : M) :
                                                                      (c.liftₐ f H) x = f x
                                                                      theorem RingCon.liftₐ_range {M : Type u_1} {P : Type u_3} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring P] [Algebra R P] {c : RingCon M} {f : M →ₐ[R] P} (H : c ker f.toRingHom) :
                                                                      (c.liftₐ f H).range = f.range

                                                                      Given a congruence relation c on an algebra and a homomorphism f constant on the equivalence classes of c, f has the same image as the homomorphism that f induces on the quotient.

                                                                      def RingCon.kerLiftₐ {M : Type u_1} {P : Type u_3} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring P] [Algebra R P] (f : M →ₐ[R] P) :

                                                                      The homomorphism induced on the quotient of a ring by the kernel of a ring homomorphism.

                                                                      Equations
                                                                        Instances For
                                                                          theorem RingCon.kerLiftₐ_mk {M : Type u_1} {P : Type u_3} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring P] [Algebra R P] {f : M →ₐ[R] P} (x : M) :
                                                                          (kerLiftₐ f) x = f x

                                                                          The diagram described by the universal property for quotients of rings, when the ring congruence relation is the kernel of the homomorphism, commutes.

                                                                          theorem RingCon.kerLiftₐ_injective {M : Type u_1} {P : Type u_3} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring P] [Algebra R P] (f : M →ₐ[R] P) :

                                                                          A ring homomorphism f induces an injective homomorphism on the quotient by f's kernel.

                                                                          def RingCon.factorₐ {M : Type u_1} (R : Type u_4) [CommSemiring R] [Semiring M] [Algebra R M] {c d : RingCon M} (h : c d) :

                                                                          Given ring congruence relations c, d on an algebra such that d contains c, d's quotient map induces an algebra homomorphism from the quotient by c to the quotient by d.

                                                                          Equations
                                                                            Instances For
                                                                              theorem RingCon.factorₐ_apply {M : Type u_1} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] {c d : RingCon M} (h : c d) (x : c.Quotient) :
                                                                              (factorₐ R h) x = (c.liftₐ (mkₐ R d) ) x

                                                                              Given ring congruence relations c, d on a ring such that d contains c, the definition of the homomorphism from the quotient by c to the quotient by d induced by d's quotient map.

                                                                              @[simp]
                                                                              theorem RingCon.factorₐ_mk {M : Type u_1} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] {c d : RingCon M} (h : c d) (x : M) :

                                                                              Given ring congruence relations c, d on a ring such that d contains c, the definition of the homomorphism from the quotient by c to the quotient by d induced by d's quotient map.

                                                                              @[simp]
                                                                              theorem RingCon.mkₐ_comp_factorₐ_comp_mkₐ {M : Type u_1} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] {c d : RingCon M} (h : c d) :
                                                                              (factorₐ R h).comp (mkₐ R c) = mkₐ R d
                                                                              @[simp]
                                                                              theorem RingCon.kerLiftₐ_range_eq {M : Type u_1} {P : Type u_3} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring P] [Algebra R P] {f : M →ₐ[R] P} :

                                                                              Given a ring homomorphism f, the induced homomorphism on the quotient by f's kernel has the same image as f.

                                                                              noncomputable def RingCon.quotientKerEquivRangeₐ {M : Type u_1} {P : Type u_3} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring P] [Algebra R P] (f : M →ₐ[R] P) :
                                                                              (ker f).Quotient ≃ₐ[R] f.range

                                                                              The first isomorphism theorem for algebra morphisms.

                                                                              Equations
                                                                                Instances For
                                                                                  theorem RingCon.quotientKerEquivRangeₐ_mkₐ {M : Type u_1} {P : Type u_3} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring P] [Algebra R P] (f : M →ₐ[R] P) (x : M) :
                                                                                  @[simp]
                                                                                  theorem RingCon.coe_quotientKerEquivRangeₐ_mkₐ {M : Type u_1} {P : Type u_3} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring P] [Algebra R P] (f : M →ₐ[R] P) (x : M) :
                                                                                  ((quotientKerEquivRangeₐ f) x) = f x
                                                                                  theorem RingCon.quotientKerEquivRangeₐ_comp_mkₐ {M : Type u_1} {N : Type u_2} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring N] [Algebra R N] (φ : M →ₐ[R] N) :
                                                                                  noncomputable def RingCon.comapQuotientEquivRangeₐ {M : Type u_1} {N : Type u_2} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring N] [Algebra R N] (c : RingCon M) (f : N →ₐ[R] M) {d : RingCon N} (h : d = c.comap f) :
                                                                                  d.Quotient ≃ₐ[R] ((mkₐ R c).comp f).range

                                                                                  The second isomorphism theorem for algebras.

                                                                                  Equations
                                                                                    Instances For
                                                                                      theorem RingCon.comapQuotientEquivRangeₐ_mk {M : Type u_1} {N : Type u_2} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring N] [Algebra R N] (c : RingCon M) (f : N →ₐ[R] M) {d : RingCon N} (h : d = c.comap f) (x : N) :
                                                                                      (c.comapQuotientEquivRangeₐ f h) x = (f x),
                                                                                      @[simp]
                                                                                      theorem RingCon.coe_comapQuotientEquivRangeₐ_mk {M : Type u_1} {N : Type u_2} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring N] [Algebra R N] (c : RingCon M) (f : N →ₐ[R] M) (x : N) {d : RingCon N} (h : d = c.comap f) :
                                                                                      ((c.comapQuotientEquivRangeₐ f h) x) = (f x)
                                                                                      @[simp]
                                                                                      theorem RingCon.coe_comapQuotientEquivRangeₐ_symm_mk {M : Type u_1} {N : Type u_2} {R : Type u_4} [CommSemiring R] [Semiring M] [Algebra R M] [Semiring N] [Algebra R N] (c : RingCon M) (f : N →ₐ[R] M) (x : N) {d : RingCon N} (h : d = c.comap f) :
                                                                                      (c.comapQuotientEquivRangeₐ f h).symm (f x), = x
                                                                                      def RingCon.quotientQuotientEquivQuotientₐ {M : Type u_1} (R : Type u_4) [CommSemiring R] [Semiring M] [Algebra R M] {c d : RingCon M} (h : c d) :

                                                                                      The third isomorphism theorem for algebras.

                                                                                      Equations
                                                                                        Instances For
                                                                                          @[simp]
                                                                                          theorem RingCon.quotientQuotientEquivQuotientₐ_coe_coe {M : Type u_1} (R : Type u_4) [CommSemiring R] [Semiring M] [Algebra R M] {c d : RingCon M} (h : c d) (x : M) :