Documentation

Mathlib.RingTheory.DedekindDomain.PID

Criteria under which a Dedekind domain is a PID #

This file contains some results that we can use to test whether all ideals in a Dedekind domain are principal.

Main results #

theorem Ideal.eq_span_singleton_of_mem_of_notMem_sq_of_notMem_prime_ne {R : Type u_1} [CommRing R] {P : Ideal R} (hP : P.IsPrime) [IsDedekindDomain R] {x : R} (x_mem : x โˆˆ P) (hxP2 : x โˆ‰ P ^ 2) (hxQ : โˆ€ (Q : Ideal R), Q.IsPrime โ†’ Q โ‰  P โ†’ x โˆ‰ Q) :
P = span {x}

Let P be a prime ideal, x โˆˆ P \ Pยฒ and x โˆ‰ Q for all prime ideals Q โ‰  P. Then P is generated by x.

theorem FractionalIdeal.isPrincipal_of_unit_of_comap_mul_span_singleton_eq_top {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {S : Submonoid R} [IsLocalization S A] (I : (FractionalIdeal S A)หฃ) {v : A} (hv : v โˆˆ โ†‘Iโปยน) (h : Submodule.comap (Algebra.linearMap R A) (โ†‘โ†‘I * (R โˆ™ v)) = โŠค) :
(โ†‘โ†‘I).IsPrincipal
theorem FractionalIdeal.isPrincipal.of_finite_maximals_of_inv {R : Type u_1} [CommRing R] {A : Type u_2} [CommRing A] [Algebra R A] {S : Submonoid R} [IsLocalization S A] (hS : S โ‰ค nonZeroDivisors R) (hf : {I : Ideal R | I.IsMaximal}.Finite) (I I' : FractionalIdeal S A) (hinv : I * I' = 1) :
(โ†‘I).IsPrincipal

An invertible fractional ideal of a commutative ring with finitely many maximal ideals is principal.

https://math.stackexchange.com/a/95857

An invertible ideal in a commutative ring with finitely many maximal ideals is principal.

https://math.stackexchange.com/a/95857

A Dedekind domain is a PID if its set of maximal ideals is finite.

A Dedekind domain is a PID if its set of primes is finite.

theorem IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime {R : Type u_1} [CommRing R] [IsDedekindDomain R] (S : Type u_2) [CommRing S] [Algebra R S] [Module.IsTorsionFree R S] [Module.Finite R S] (p : Ideal R) (hp0 : p โ‰  โŠฅ) [p.IsPrime] {Sโ‚š : Type u_3} [CommRing Sโ‚š] [Algebra S Sโ‚š] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sโ‚š] [Algebra R Sโ‚š] [IsScalarTower R S Sโ‚š] [IsDedekindDomain Sโ‚š] [IsDomain S] {P : Ideal Sโ‚š} (hP : P.IsPrime) (hP0 : P โ‰  โŠฅ) :

If p is a prime in the Dedekind domain R, S an extension of R and Sโ‚š the localization of S at p, then all primes in Sโ‚š are factors of the image of p in Sโ‚š.

theorem IsDedekindDomain.isPrincipalIdealRing_localization_over_prime {R : Type u_1} [CommRing R] [IsDedekindDomain R] (S : Type u_2) [CommRing S] [Algebra R S] [Module.IsTorsionFree R S] [Module.Finite R S] (p : Ideal R) (hp0 : p โ‰  โŠฅ) [p.IsPrime] {Sโ‚š : Type u_3} [CommRing Sโ‚š] [Algebra S Sโ‚š] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sโ‚š] [Algebra R Sโ‚š] [IsScalarTower R S Sโ‚š] [IsDedekindDomain Sโ‚š] [IsDomain S] :

Let p be a prime in the Dedekind domain R and S be an integral extension of R, then the localization Sโ‚š of S at p is a PID.