Documentation

Mathlib.RingTheory.Derivation.Lie

Lie Algebra Structure on Derivations #

Main statements #

Lie structures #

instance Derivation.instBracket {R : Type u_1} [CommRing R] {A : Type u_2} [CommRing A] [Algebra R A] :
Bracket (Derivation R A A) (Derivation R A A)

The commutator of derivations is again a derivation.

Equations
    @[simp]
    theorem Derivation.commutator_coe_linear_map {R : Type u_1} [CommRing R] {A : Type u_2} [CommRing A] [Algebra R A] {D1 D2 : Derivation R A A} :
    D1, D2 = D1, D2
    theorem Derivation.commutator_apply {R : Type u_1} [CommRing R] {A : Type u_2} [CommRing A] [Algebra R A] {D1 D2 : Derivation R A A} (a : A) :
    D1, D2 a = D1 (D2 a) - D2 (D1 a)
    instance Derivation.instLieRing {R : Type u_1} [CommRing R] {A : Type u_2} [CommRing A] [Algebra R A] :
    Equations
      instance Derivation.instLieAlgebra {R : Type u_1} [CommRing R] {A : Type u_2} [CommRing A] [Algebra R A] :
      Equations
        instance Derivation.instLieRingModule {R : Type u_1} [CommRing R] {A : Type u_2} [CommRing A] [Algebra R A] :
        Equations
          instance Derivation.instLieModule {R : Type u_1} [CommRing R] {A : Type u_2} [CommRing A] [Algebra R A] :
          LieModule R (Derivation R A A) A
          @[simp]
          theorem Derivation.bracket_eq_fun {R : Type u_1} [CommRing R] {A : Type u_2} [CommRing A] [Algebra R A] (X : Derivation R A A) (a : A) :
          X, a = X a