Finitely generated ideals #
Lemmas about finiteness of ideal operations.
theorem
Ideal.FG.map
{R : Type u_3}
{S : Type u_4}
[Semiring R]
[Semiring S]
{I : Ideal R}
(h : I.FG)
(f : R →+* S)
:
The image of a finitely generated ideal is finitely generated.
This is the Ideal version of Submodule.FG.map.
theorem
Ideal.fg_ker_comp
{R : Type u_3}
{S : Type u_4}
{A : Type u_5}
[CommRing R]
[CommRing S]
[CommRing A]
(f : R →+* S)
(g : S →+* A)
(hf : (RingHom.ker f).FG)
(hg : (RingHom.ker g).FG)
(hsur : Function.Surjective ⇑f)
:
(RingHom.ker (g.comp f)).FG
theorem
Ideal.exists_radical_pow_le_of_fg
{R : Type u_3}
[CommSemiring R]
(I : Ideal R)
(h : I.radical.FG)
:
theorem
Ideal.exists_pow_le_of_le_radical_of_fg
{R : Type u_3}
[CommSemiring R]
{I J : Ideal R}
(h' : I ≤ J.radical)
(h : I.FG)
:
theorem
Submodule.FG.smul
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
{I : Ideal R}
[I.IsTwoSided]
{N : Submodule R M}
(hI : I.FG)
(hN : N.FG)
:
theorem
Ideal.FG.mul
{R : Type u_1}
[Semiring R]
{I J : Ideal R}
[I.IsTwoSided]
(hI : I.FG)
(hJ : J.FG)
: