Documentation

Mathlib.RingTheory.FractionalIdeal.Extended

Extension of fractional ideals #

This file defines the extension of a fractional ideal along a ring homomorphism.

Main definitions #

Main results #

Tags #

fractional ideal, fractional ideals, extended, extension

def FractionalIdeal.extended {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I : FractionalIdeal M K) :

Given commutative rings A and B with respective localizations IsLocalization M K and IsLocalization N L, and a ring homomorphism f : A →+* B satisfying M ≤ Submonoid.comap f N, a fractional ideal I of A can be extended along f to a fractional ideal of B.

Equations
    Instances For
      theorem FractionalIdeal.mem_extended_iff {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I : FractionalIdeal M K) (x : L) :
      x extended L hf I x Submodule.span B ((IsLocalization.map L f hf) '' I)
      @[simp]
      theorem FractionalIdeal.coe_extended_eq_span {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I : FractionalIdeal M K) :
      (extended L hf I) = Submodule.span B ((IsLocalization.map L f hf) '' I)
      @[simp]
      theorem FractionalIdeal.extended_zero {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) :
      extended L hf 0 = 0
      theorem FractionalIdeal.extended_ne_zero {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) {I : FractionalIdeal M K} [IsDomain B] (hf' : Function.Injective f) (hI : I 0) (hN : 0N) :
      extended L hf I 0
      @[simp]
      theorem FractionalIdeal.extended_eq_zero_iff {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) {I : FractionalIdeal M K} [IsDomain B] (hf' : Function.Injective f) (hN : 0N) :
      extended L hf I = 0 I = 0
      @[simp]
      theorem FractionalIdeal.extended_one {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) :
      extended L hf 1 = 1
      theorem FractionalIdeal.extended_le_one_of_le_one {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I : FractionalIdeal M K) (hI : I 1) :
      extended L hf I 1
      theorem FractionalIdeal.one_le_extended_of_one_le {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I : FractionalIdeal M K) (hI : 1 I) :
      1 extended L hf I
      theorem FractionalIdeal.extended_add {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I J : FractionalIdeal M K) :
      extended L hf (I + J) = extended L hf I + extended L hf J
      theorem FractionalIdeal.extended_mul {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I J : FractionalIdeal M K) :
      extended L hf (I * J) = extended L hf I * extended L hf J
      @[simp]
      theorem FractionalIdeal.extended_coeIdeal_eq_map {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I₀ : Ideal A) :
      extended L hf I₀ = (Ideal.map f I₀)
      def FractionalIdeal.extendedHom {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) :

      The ring homomorphism version of FractionalIdeal.extended.

      Equations
        Instances For
          @[simp]
          theorem FractionalIdeal.extendedHom_apply {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I : FractionalIdeal M K) :
          (extendedHom L hf) I = extended L hf I
          @[reducible, inline]

          The ring homomorphisme that extends a fractional ideal of A to a fractional ideal of B for A ⊆ B an extension of domains.

          Equations
            Instances For
              theorem FractionalIdeal.extendedHomₐ_eq_zero_iff {A : Type u_1} {K : Type u_2} (L : Type u_3) (B : Type u_4) [CommRing A] [IsDomain A] [CommRing B] [IsDomain B] [Algebra A B] [Module.IsTorsionFree A B] [Field K] [Field L] [Algebra A K] [Algebra B L] [IsFractionRing A K] [IsFractionRing B L] {I : FractionalIdeal (nonZeroDivisors A) K} :
              (extendedHomₐ L B) I = 0 I = 0
              theorem FractionalIdeal.extendedHomₐ_coeIdeal_eq_map {A : Type u_1} {K : Type u_2} (L : Type u_3) (B : Type u_4) [CommRing A] [IsDomain A] [CommRing B] [IsDomain B] [Algebra A B] [Module.IsTorsionFree A B] [Field K] [Field L] [Algebra A K] [Algebra B L] [IsFractionRing A K] [IsFractionRing B L] (I : Ideal A) :
              (extendedHomₐ L B) I = (Ideal.map (algebraMap A B) I)
              theorem FractionalIdeal.coe_extendedHomₐ_eq_span {A : Type u_1} {K : Type u_2} (L : Type u_3) (B : Type u_4) [CommRing A] [IsDomain A] [CommRing B] [IsDomain B] [Algebra A B] [Module.IsTorsionFree A B] [Field K] [Field L] [Algebra A K] [Algebra B L] [IsFractionRing A K] [IsFractionRing B L] [Algebra K L] [Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [Algebra.IsIntegral A B] (I : FractionalIdeal (nonZeroDivisors A) K) :
              ((extendedHomₐ L B) I) = Submodule.span B ((algebraMap K L) '' I)
              theorem FractionalIdeal.extendedHomₐ_eq_one_iff {A : Type u_1} {K : Type u_2} (L : Type u_3) (B : Type u_4) [CommRing A] [IsDomain A] [CommRing B] [IsDomain B] [Algebra A B] [Module.IsTorsionFree A B] [Field K] [Field L] [Algebra A K] [Algebra B L] [IsFractionRing A K] [IsFractionRing B L] {I : FractionalIdeal (nonZeroDivisors A) K} [Algebra K L] [Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [Algebra.IsIntegral A B] [IsDedekindDomain A] [IsDedekindDomain B] (hI : I 0) :
              (extendedHomₐ L B) I = 1 I = 1