Documentation

Mathlib.RingTheory.HahnSeries.Cardinal

Cardinality of Hahn series #

We define HahnSeries.cardSupp as the cardinality of the support of a Hahn series, and find bounds for the cardinalities of different operations. We also build the subgroups, subrings, etc. of Hahn series bounded by a given infinite cardinal.

Cardinality function #

def HahnSeries.cardSupp {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] (x : HahnSeries Γ R) :

The cardinality of the support of a Hahn series.

Equations
    Instances For
      theorem HahnSeries.cardSupp_congr {Γ : Type u_1} {R : Type u_2} {S : Type u_3} [PartialOrder Γ] [Zero R] [Zero S] {x : HahnSeries Γ R} {y : HahnSeries Γ S} (h : x.support = y.support) :
      theorem HahnSeries.cardSupp_mono {Γ : Type u_1} {R : Type u_2} {S : Type u_3} [PartialOrder Γ] [Zero R] [Zero S] {x : HahnSeries Γ R} {y : HahnSeries Γ S} (h : x.support y.support) :
      @[simp]
      theorem HahnSeries.cardSupp_zero {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] :
      theorem HahnSeries.cardSupp_single_of_ne {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] (a : Γ) {r : R} (h : r 0) :
      ((single a) r).cardSupp = 1
      theorem HahnSeries.cardSupp_single_le {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] (a : Γ) (r : R) :
      ((single a) r).cardSupp 1
      @[simp]
      theorem HahnSeries.cardSupp_one_le {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] [Zero Γ] [One R] :
      @[simp]
      theorem HahnSeries.cardSupp_one {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] [Zero Γ] [One R] [NeZero 1] :
      theorem HahnSeries.cardSupp_map_le {Γ : Type u_1} {R : Type u_2} {S : Type u_3} [PartialOrder Γ] [Zero R] [Zero S] (x : HahnSeries Γ R) (f : ZeroHom R S) :
      theorem HahnSeries.cardSupp_truncLT_le {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [Zero R] [DecidableLT Γ] (x : HahnSeries Γ R) (c : Γ) :
      theorem HahnSeries.cardSupp_smul_le {Γ : Type u_1} {R : Type u_2} {S : Type u_3} [PartialOrder Γ] [Zero R] (s : S) (x : HahnSeries Γ R) [SMulZeroClass S R] :
      @[simp]
      theorem HahnSeries.cardSupp_neg {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddGroup R] (x : HahnSeries Γ R) :
      theorem HahnSeries.cardSupp_sub_le {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddGroup R] (x y : HahnSeries Γ R) :

      Substructures #

      The κ-bounded submonoid of Hahn series with less than κ terms.

      Equations
        Instances For

          The κ-bounded subgroup of Hahn series with less than κ terms.

          Equations
            Instances For

              The κ-bounded subring of Hahn series with less than κ terms.

              Equations
                Instances For

                  The κ-bounded subfield of Hahn series with less than κ terms.

                  Equations
                    Instances For