Documentation

Mathlib.RingTheory.Ideal.Quotient.Defs

Ideal quotients #

This file defines ideal quotients as a special case of submodule quotients and proves some basic results about these quotients.

See Algebra.RingQuot for quotients of non-commutative rings.

Main definitions #

instance Ideal.instHasQuotient {R : Type u} [Ring R] :

The quotient R/I of a ring R by an ideal I, defined to equal the quotient of I as an R-submodule of R.

Equations
    instance Ideal.instHasQuotient_1 {R : Type u_1} [CommRing R] :

    Shortcut instance for commutative rings.

    Equations
      instance Ideal.Quotient.one {R : Type u} [Ring R] (I : Ideal R) :
      Equations
        def Ideal.Quotient.ringCon {R : Type u} [Ring R] (I : Ideal R) [I.IsTwoSided] :

        On Ideals, Submodule.quotientRel is a ring congruence.

        Equations
          Instances For
            instance Ideal.Quotient.ring {R : Type u} [Ring R] (I : Ideal R) [I.IsTwoSided] :
            Equations
              def Ideal.Quotient.mk {R : Type u} [Ring R] (I : Ideal R) [I.IsTwoSided] :

              The ring homomorphism from a ring R to a quotient ring R/I.

              Equations
                Instances For
                  theorem Ideal.Quotient.ringHom_ext {R : Type u} [Ring R] {I : Ideal R} {S : Type v} [I.IsTwoSided] [NonAssocSemiring S] โฆƒf g : R โงธ I โ†’+* Sโฆ„ (h : f.comp (mk I) = g.comp (mk I)) :
                  f = g

                  Two RingHoms from the quotient by an ideal are equal if their compositions with Ideal.Quotient.mk' are equal.

                  See note [partially-applied ext lemmas].

                  theorem Ideal.Quotient.ringHom_ext_iff {R : Type u} [Ring R] {I : Ideal R} {S : Type v} [I.IsTwoSided] [NonAssocSemiring S] {f g : R โงธ I โ†’+* S} :
                  f = g โ†” f.comp (mk I) = g.comp (mk I)
                  theorem Ideal.Quotient.eq {R : Type u} [Ring R] {I : Ideal R} {x y : R} [I.IsTwoSided] :
                  (mk I) x = (mk I) y โ†” x - y โˆˆ I
                  @[simp]
                  theorem Ideal.Quotient.mk_eq_mk {R : Type u} [Ring R] {I : Ideal R} [I.IsTwoSided] (x : R) :
                  theorem Ideal.Quotient.eq_zero_iff_mem {R : Type u} [Ring R] {I : Ideal R} {a : R} [I.IsTwoSided] :
                  (mk I) a = 0 โ†” a โˆˆ I
                  theorem Ideal.Quotient.mk_eq_mk_iff_sub_mem {R : Type u} [Ring R] {I : Ideal R} [I.IsTwoSided] (x y : R) :
                  (mk I) x = (mk I) y โ†” x - y โˆˆ I
                  @[simp]
                  theorem Ideal.Quotient.mk_out {R : Type u} [Ring R] {I : Ideal R} [I.IsTwoSided] (x : R โงธ I) :
                  (mk I) (Quotient.out x) = x
                  theorem Ideal.Quotient.quotient_ring_saturate {R : Type u} [Ring R] {I : Ideal R} [I.IsTwoSided] (s : Set R) :
                  โ‡‘(mk I) โปยน' (โ‡‘(mk I) '' s) = โ‹ƒ (x : โ†ฅI), (fun (y : R) => โ†‘x + y) '' s

                  If I is an ideal of a commutative ring R, if q : R โ†’ R/I is the quotient map, and if s โІ R is a subset, then qโปยน(q(s)) = โ‹ƒแตข(i + s), the union running over all i โˆˆ I.

                  def Ideal.Quotient.lift {R : Type u} [Ring R] (I : Ideal R) {S : Type v} [I.IsTwoSided] [Semiring S] (f : R โ†’+* S) (H : โˆ€ a โˆˆ I, f a = 0) :

                  Given a ring homomorphism f : R โ†’+* S sending all elements of an ideal to zero, lift it to the quotient by this ideal.

                  Equations
                    Instances For
                      @[simp]
                      theorem Ideal.Quotient.lift_mk {R : Type u} [Ring R] (I : Ideal R) {a : R} {S : Type v} [I.IsTwoSided] [Semiring S] (f : R โ†’+* S) (H : โˆ€ a โˆˆ I, f a = 0) :
                      (lift I f H) ((mk I) a) = f a
                      theorem Ideal.Quotient.lift_comp_mk {R : Type u} [Ring R] (I : Ideal R) {S : Type v} [I.IsTwoSided] [Semiring S] (f : R โ†’+* S) (H : โˆ€ a โˆˆ I, f a = 0) :
                      (lift I f H).comp (mk I) = f
                      theorem Ideal.Quotient.lift_surjective_of_surjective {R : Type u} [Ring R] (I : Ideal R) {S : Type v} [I.IsTwoSided] [Semiring S] {f : R โ†’+* S} (H : โˆ€ a โˆˆ I, f a = 0) (hf : Function.Surjective โ‡‘f) :
                      Function.Surjective โ‡‘(lift I f H)
                      def Ideal.Quotient.factor {R : Type u} [Ring R] {S T : Ideal R} [S.IsTwoSided] [T.IsTwoSided] (H : S โ‰ค T) :

                      The ring homomorphism from the quotient by a smaller ideal to the quotient by a larger ideal.

                      This is the Ideal.Quotient version of Quot.Factor

                      When the two ideals are of the form I^m and I^n and n โ‰ค m, please refer to the dedicated version Ideal.Quotient.factorPow.

                      Equations
                        Instances For
                          @[simp]
                          theorem Ideal.Quotient.factor_mk {R : Type u} [Ring R] {S T : Ideal R} [S.IsTwoSided] [T.IsTwoSided] (H : S โ‰ค T) (x : R) :
                          (factor H) ((mk S) x) = (mk T) x
                          @[simp]
                          theorem Ideal.Quotient.factor_eq {R : Type u} [Ring R] {S : Ideal R} [S.IsTwoSided] :
                          factor โ‹ฏ = RingHom.id (R โงธ S)
                          @[simp]
                          theorem Ideal.Quotient.factor_comp_mk {R : Type u} [Ring R] {S T : Ideal R} [S.IsTwoSided] [T.IsTwoSided] (H : S โ‰ค T) :
                          (factor H).comp (mk S) = mk T
                          @[simp]
                          theorem Ideal.Quotient.factor_comp {R : Type u} [Ring R] {S T U : Ideal R} [S.IsTwoSided] [T.IsTwoSided] [U.IsTwoSided] (H1 : S โ‰ค T) (H2 : T โ‰ค U) :
                          (factor H2).comp (factor H1) = factor โ‹ฏ
                          @[simp]
                          theorem Ideal.Quotient.factor_comp_apply {R : Type u} [Ring R] {S T U : Ideal R} [S.IsTwoSided] [T.IsTwoSided] [U.IsTwoSided] (H1 : S โ‰ค T) (H2 : T โ‰ค U) (x : R โงธ S) :
                          (factor H2) ((factor H1) x) = (factor โ‹ฏ) x
                          def Ideal.quotEquivOfEq {R : Type u} [Ring R] {I J : Ideal R} [I.IsTwoSided] [J.IsTwoSided] (h : I = J) :

                          Quotienting by equal ideals gives equivalent rings.

                          See also Submodule.quotEquivOfEq and Ideal.quotientEquivAlgOfEq.

                          Equations
                            Instances For
                              @[simp]
                              theorem Ideal.quotEquivOfEq_mk {R : Type u} [Ring R] {I J : Ideal R} [I.IsTwoSided] [J.IsTwoSided] (h : I = J) (x : R) :
                              @[simp]
                              theorem Ideal.quotEquivOfEq_symm {R : Type u} [Ring R] {I J : Ideal R} [I.IsTwoSided] [J.IsTwoSided] (h : I = J) :
                              theorem Ideal.quotEquivOfEq_eq_factor {R : Type u} [Ring R] {I J : Ideal R} [I.IsTwoSided] [J.IsTwoSided] (h : I = J) (x : R โงธ I) :
                              (quotEquivOfEq h) x = (Quotient.factor โ‹ฏ) x