Almost integral elements #
def
completeIntegralClosure
(R : Type u_1)
(S : Type u_2)
[CommRing R]
[CommRing S]
[Algebra R S]
:
Subalgebra R S
The complete integral closure is the subalgebra of almost integral elements.
Equations
Instances For
theorem
IsIntegral.isAlmostIntegral_of_exists_smul_mem_range
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{s : S}
(H : IsIntegral R s)
(h : ∃ t ∈ nonZeroDivisors R, t • s ∈ (algebraMap R S).range)
:
IsAlmostIntegral R s
theorem
IsIntegral.isAlmostIntegral_of_isLocalization
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{s : S}
(H : IsIntegral R s)
(M : Submonoid R)
(hM : M ≤ nonZeroDivisors R)
[IsLocalization M S]
:
IsAlmostIntegral R s
theorem
IsIntegral.isAlmostIntegral
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsFractionRing R S]
{s : S}
(H : IsIntegral R s)
:
IsAlmostIntegral R s
Stacks Tag 00GX (Part 2)
theorem
integralClosure_le_completeIntegralClosure
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsFractionRing R S]
:
theorem
IsAlmostIntegral.isIntegral_of_nonZeroDivisors_le_comap
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{s : S}
(H : IsAlmostIntegral R s)
[IsNoetherianRing R]
(H' : nonZeroDivisors R ≤ Submonoid.comap (algebraMap R S) (nonZeroDivisors S))
:
IsIntegral R s
theorem
IsAlmostIntegral.isIntegral
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsNoetherianRing R]
[IsDomain S]
[FaithfulSMul R S]
{s : S}
(H : IsAlmostIntegral R s)
:
IsIntegral R s
Stacks Tag 00GX (Part 3)
theorem
isAlmostIntegral_iff_isIntegral
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsNoetherianRing R]
[IsDomain R]
[IsFractionRing R S]
{s : S}
:
theorem
completeIntegralClosure_eq_integralClosure
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsNoetherianRing R]
[IsDomain R]
[IsFractionRing R S]
: