The KΓ€hler differential module of polynomial algebras #
The relative differential module of a polynomial algebra R[Ο] is the free module generated by
{ dx | x β Ο }. Also see KaehlerDifferential.mvPolynomialBasis.
Equations
Instances For
noncomputable def
KaehlerDifferential.mvPolynomialBasis
(R : Type u)
[CommRing R]
(Ο : Type u_1)
:
Module.Basis Ο (MvPolynomial Ο R) Ξ©[MvPolynomial Ο RβR]
{ dx | x β Ο } forms a basis of the relative differential module
of a polynomial algebra R[Ο].
Equations
Instances For
theorem
KaehlerDifferential.mvPolynomialBasis_repr_comp_D
(R : Type u)
[CommRing R]
(Ο : Type u_1)
:
(β(mvPolynomialBasis R Ο).repr).compDer (D R (MvPolynomial Ο R)) = MvPolynomial.mkDerivation R fun (x : Ο) => funβ | x => 1
theorem
KaehlerDifferential.mvPolynomialBasis_repr_D
(R : Type u)
[CommRing R]
(Ο : Type u_1)
(x : MvPolynomial Ο R)
:
(mvPolynomialBasis R Ο).repr ((D R (MvPolynomial Ο R)) x) = (MvPolynomial.mkDerivation R fun (x : Ο) => funβ | x => 1) x
@[simp]
theorem
KaehlerDifferential.mvPolynomialBasis_repr_D_X
(R : Type u)
[CommRing R]
(Ο : Type u_1)
(i : Ο)
:
@[simp]
theorem
KaehlerDifferential.mvPolynomialBasis_repr_apply
(R : Type u)
[CommRing R]
(Ο : Type u_1)
(x : MvPolynomial Ο R)
(i : Ο)
:
theorem
KaehlerDifferential.mvPolynomialBasis_repr_symm_single
(R : Type u)
[CommRing R]
(Ο : Type u_1)
(i : Ο)
(x : MvPolynomial Ο R)
:
((mvPolynomialBasis R Ο).repr.symm funβ | i => x) = x β’ (D R (MvPolynomial Ο R)) (MvPolynomial.X i)
@[simp]
theorem
KaehlerDifferential.mvPolynomialBasis_apply
(R : Type u)
[CommRing R]
(Ο : Type u_1)
(i : Ο)
:
instance
instFreeMvPolynomialKaehlerDifferential
(R : Type u)
[CommRing R]
(Ο : Type u_1)
:
Module.Free (MvPolynomial Ο R) Ξ©[MvPolynomial Ο RβR]
The relative differential module of the univariate polynomial algebra R[X] is isomorphic to
R[X] as an R[X]-module.
Equations
Instances For
@[simp]
@[simp]