Documentation

Mathlib.RingTheory.Kaehler.Polynomial

The KΓ€hler differential module of polynomial algebras #

The relative differential module of a polynomial algebra R[Οƒ] is the free module generated by { dx | x ∈ Οƒ }. Also see KaehlerDifferential.mvPolynomialBasis.

Equations
    Instances For
      noncomputable def KaehlerDifferential.mvPolynomialBasis (R : Type u) [CommRing R] (Οƒ : Type u_1) :

      { dx | x ∈ Οƒ } forms a basis of the relative differential module of a polynomial algebra R[Οƒ].

      Equations
        Instances For
          theorem KaehlerDifferential.mvPolynomialBasis_repr_D (R : Type u) [CommRing R] (Οƒ : Type u_1) (x : MvPolynomial Οƒ R) :
          (mvPolynomialBasis R Οƒ).repr ((D R (MvPolynomial Οƒ R)) x) = (MvPolynomial.mkDerivation R fun (x : Οƒ) => funβ‚€ | x => 1) x
          @[simp]
          theorem KaehlerDifferential.mvPolynomialBasis_repr_D_X (R : Type u) [CommRing R] (Οƒ : Type u_1) (i : Οƒ) :
          @[simp]
          theorem KaehlerDifferential.mvPolynomialBasis_repr_apply (R : Type u) [CommRing R] (Οƒ : Type u_1) (x : MvPolynomial Οƒ R) (i : Οƒ) :
          ((mvPolynomialBasis R Οƒ).repr ((D R (MvPolynomial Οƒ R)) x)) i = (MvPolynomial.pderiv i) x
          @[simp]
          theorem KaehlerDifferential.mvPolynomialBasis_apply (R : Type u) [CommRing R] (Οƒ : Type u_1) (i : Οƒ) :
          (mvPolynomialBasis R Οƒ) i = (D R (MvPolynomial Οƒ R)) (MvPolynomial.X i)

          The relative differential module of the univariate polynomial algebra R[X] is isomorphic to R[X] as an R[X]-module.

          Equations
            Instances For