Documentation

Mathlib.RingTheory.LocalRing.Basic

Local rings #

We prove basic properties of local rings.

theorem IsLocalRing.of_nonunits_add {R : Type u_1} [Semiring R] [Nontrivial R] (h : ∀ (a b : R), a nonunits Rb nonunits Ra + b nonunits R) :

A semiring is local if it is nontrivial and the set of nonunits is closed under the addition.

A semiring is local if it has a unique maximal ideal.

theorem IsLocalRing.nonunits_add {R : Type u_1} [CommSemiring R] [IsLocalRing R] {a b : R} (ha : a nonunits R) (hb : b nonunits R) :
a + b nonunits R
@[instance 100]
instance Field.instIsLocalRing (K : Type u_3) [Field K] :