Local subrings of fields #
Main results #
LocalSubring: The class of local subrings of a commutative ring.LocalSubring.ofPrime: The localization of a subring as aLocalSubring.
instance
instIsLocalRingSubtypeMemSubringMapOfNontrivial
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Nontrivial S]
(f : R β+* S)
(s : Subring R)
[IsLocalRing β₯s]
:
IsLocalRing β₯(Subring.map f s)
The class of local subrings of a commutative ring.
- toSubring : Subring R
The underlying subring of a local subring.
- isLocalRing : IsLocalRing β₯self.toSubring
Instances For
theorem
LocalSubring.ext
{R : Type u_1}
{instβ : CommRing R}
{x y : LocalSubring R}
(toSubring : x.toSubring = y.toSubring)
:
def
LocalSubring.copy
{R : Type u_1}
[CommRing R]
(S : LocalSubring R)
(s : Set R)
(hs : s = βS.toSubring)
:
Copy of a local subring with a new carrier equal to the old one.
Useful to fix definitional equalities.
Equations
Instances For
def
LocalSubring.map
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Nontrivial S]
(f : R β+* S)
(s : LocalSubring R)
:
The image of a LocalSubring as a LocalSubring.
Equations
Instances For
@[simp]
theorem
LocalSubring.map_toSubring
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Nontrivial S]
(f : R β+* S)
(s : LocalSubring R)
:
def
LocalSubring.range
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[IsLocalRing R]
[Nontrivial S]
(f : R β+* S)
:
The range of a ring homomorphism from a local ring as a LocalSubring.
Equations
Instances For
@[simp]
theorem
LocalSubring.range_toSubring
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[IsLocalRing R]
[Nontrivial S]
(f : R β+* S)
:
The domination order on local subrings.
A dominates B if and only if B β€ A (as subrings) and m_A β© B = m_B.
Equations
A dominates B if and only if B β€ A (as subrings) and m_A β© B = m_B.
noncomputable def
LocalSubring.ofPrime
{K : Type u_3}
[Field K]
(A : Subring K)
(P : Ideal β₯A)
[P.IsPrime]
:
The localization of a subring at a prime, as a local subring.
Also see Localization.subalgebra.ofField
Equations
Instances For
instance
LocalSubring.instIsScalarTowerSubtypeMemSubringToSubringOfPrime
{K : Type u_3}
[Field K]
(A : Subring K)
(P : Ideal β₯A)
[P.IsPrime]
:
IsScalarTower (β₯A) (β₯(ofPrime A P).toSubring) K
instance
LocalSubring.instAtPrimeSubtypeMemSubringToSubringOfPrime
{K : Type u_3}
[Field K]
(A : Subring K)
(P : Ideal β₯A)
[P.IsPrime]
:
IsLocalization.AtPrime (β₯(ofPrime A P).toSubring) P