Lemmas about ideals of MvPolynomial #
Notably this contains results about monomial ideals.
Main results #
theorem
MvPolynomial.mem_ideal_span_monomial_image
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
{x : MvPolynomial Ο R}
{s : Set (Ο ββ β)}
:
x is in a monomial ideal generated by s iff every element of its support dominates one of
the generators. Note that si β€ xi is analogous to saying that the monomial corresponding to si
divides the monomial corresponding to xi.
theorem
MvPolynomial.mem_ideal_span_monomial_image_iff_dvd
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
{x : MvPolynomial Ο R}
{s : Set (Ο ββ β)}
:
theorem
MvPolynomial.mem_ideal_span_X_image
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
{x : MvPolynomial Ο R}
{s : Set Ο}
:
x is in a monomial ideal generated by variables X iff every element of its support
has a component in s.
def
MvPolynomial.idealOfVars
(Ο : Type u_1)
(R : Type u_2)
[CommSemiring R]
:
Ideal (MvPolynomial Ο R)
The ideal spanned by all variables.
Equations
Instances For
theorem
MvPolynomial.idealOfVars_eq_restrictSupportIdeal
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
:
theorem
MvPolynomial.pow_idealOfVars_eq_span
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
(n : β)
:
idealOfVars Ο R ^ n = Ideal.span ((fun (x : Ο ββ β) => (monomial x) 1) '' (βFinsupp.degree β»ΒΉ' {n}))
The nth power of idealOfVars is spanned by all monic monomials of total degree n.
theorem
MvPolynomial.mem_pow_idealOfVars_iff
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
(n : β)
(p : MvPolynomial Ο R)
:
theorem
MvPolynomial.mem_pow_idealOfVars_iff'
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
(n : β)
(p : MvPolynomial Ο R)
:
theorem
MvPolynomial.monomial_mem_pow_idealOfVars_iff
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
(n : β)
(x : Ο ββ β)
{r : R}
(h : r β 0)
:
theorem
MvPolynomial.C_mem_pow_idealOfVars_iff
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
(n : β)
(r : R)
:
theorem
MonomialOrder.span_leadingTerm_sdiff_singleton_zero
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder Ο}
(B : Set (MvPolynomial Ο R))
:
theorem
MonomialOrder.span_leadingTerm_insert_zero
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder Ο}
(B : Set (MvPolynomial Ο R))
:
theorem
MonomialOrder.span_leadingTerm_eq_span_monomial
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder Ο}
{B : Set (MvPolynomial Ο R)}
(hB : β p β B, IsUnit (m.leadingCoeff p))
:
Ideal.span (m.leadingTerm '' B) = Ideal.span ((fun (p : MvPolynomial Ο R) => (MvPolynomial.monomial (m.degree p)) 1) '' B)
theorem
MonomialOrder.span_leadingTerm_eq_span_monomialβ
{Ο : Type u_1}
{R : Type u_2}
[CommSemiring R]
{m : MonomialOrder Ο}
{B : Set (MvPolynomial Ο R)}
(hB : β p β B, IsUnit (m.leadingCoeff p) β¨ p = 0)
:
Ideal.span (m.leadingTerm '' B) = Ideal.span ((fun (p : MvPolynomial Ο R) => (MvPolynomial.monomial (m.degree p)) 1) '' (B \ {0}))
theorem
MonomialOrder.span_leadingTerm_eq_span_monomial'
{Ο : Type u_1}
{m : MonomialOrder Ο}
{k : Type u_3}
[Field k]
{B : Set (MvPolynomial Ο k)}
:
Ideal.span (m.leadingTerm '' B) = Ideal.span ((fun (p : MvPolynomial Ο k) => (MvPolynomial.monomial (m.degree p)) 1) '' (B \ {0}))
theorem
MonomialOrder.sPolynomial_mem_sup_ideal
{Ο : Type u_1}
{m : MonomialOrder Ο}
{R : Type u_3}
[CommRing R]
{I J : Ideal (MvPolynomial Ο R)}
{p q : MvPolynomial Ο R}
(hp : p β I)
(hq : q β J)
:
theorem
MonomialOrder.sPolynomial_mem_ideal
{Ο : Type u_1}
{m : MonomialOrder Ο}
{R : Type u_3}
[CommRing R]
{I : Ideal (MvPolynomial Ο R)}
{p q : MvPolynomial Ο R}
(hp : p β I)
(hq : q β I)
: