Documentation

Mathlib.RingTheory.NonUnitalSubsemiring.Defs

Bundled non-unital subsemirings #

We define bundled non-unital subsemirings and some standard constructions: subtype and inclusion ring homomorphisms.

theorem neg_mul_mem {R : Type u_1} {S : Type u_2} [Mul R] [HasDistribNeg R] [SetLike S R] [MulMemClass S R] {s : S} {x y : R} (hx : -x s) (hy : y s) :
-(x * y) s

This lemma exists for aesop, as aesop simplifies -x * y to -(x * y) before applying unsafe rules like mul_mem, leading to a dead end in cases where neg_mem does not hold.

theorem mul_neg_mem {R : Type u_1} {S : Type u_2} [Mul R] [HasDistribNeg R] [SetLike S R] [MulMemClass S R] {s : S} {x y : R} (hx : x s) (hy : -y s) :
-(x * y) s

This lemma exists for aesop, as aesop simplifies x * -y to -(x * y) before applying unsafe rules like mul_mem, leading to a dead end in cases where neg_mem does not hold.

NonUnitalSubsemiringClass S R states that S is a type of subsets s ⊆ R that are both an additive submonoid and also a multiplicative subsemigroup.

Instances

    The natural non-unital ring hom from a non-unital subsemiring of a non-unital semiring R to R.

    Equations
      Instances For
        @[simp]
        theorem NonUnitalSubsemiringClass.subtype_apply {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [SetLike S R] [NonUnitalSubsemiringClass S R] {s : S} (x : s) :
        (subtype s) x = x

        Note: currently, there are no ordered versions of non-unital rings.

        A non-unital subsemiring of a non-unital semiring R is a subset s that is both an additive submonoid and a semigroup.

        Instances For

          The actual NonUnitalSubsemiring obtained from an element of a NonUnitalSubsemiringClass.

          Equations
            Instances For
              @[instance 100]
              instance NonUnitalSubsemiring.instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMul {R : Type u} [NonUnitalNonAssocSemiring R] :
              CanLift (Set R) (NonUnitalSubsemiring R) SetLike.coe fun (s : Set R) => 0 s (∀ {x y : R}, x sy sx + y s) ∀ {x y : R}, x sy sx * y s
              theorem NonUnitalSubsemiring.ext {R : Type u} [NonUnitalNonAssocSemiring R] {S T : NonUnitalSubsemiring R} (h : ∀ (x : R), x S x T) :
              S = T

              Two non-unital subsemirings are equal if they have the same elements.

              Copy of a non-unital subsemiring with a new carrier equal to the old one. Useful to fix definitional equalities.

              Equations
                Instances For
                  @[simp]
                  theorem NonUnitalSubsemiring.coe_copy {R : Type u} [NonUnitalNonAssocSemiring R] (S : NonUnitalSubsemiring R) (s : Set R) (hs : s = S) :
                  (S.copy s hs) = s
                  def NonUnitalSubsemiring.mk' {R : Type u} [NonUnitalNonAssocSemiring R] (s : Set R) (sg : Subsemigroup R) (hg : sg = s) (sa : AddSubmonoid R) (ha : sa = s) :

                  Construct a NonUnitalSubsemiring R from a set s, a subsemigroup sg, and an additive submonoid sa such that x ∈ s ↔ x ∈ sg ↔ x ∈ sa.

                  Equations
                    Instances For
                      @[simp]
                      theorem NonUnitalSubsemiring.coe_mk' {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {sg : Subsemigroup R} (hg : sg = s) {sa : AddSubmonoid R} (ha : sa = s) :
                      (NonUnitalSubsemiring.mk' s sg hg sa ha) = s
                      @[simp]
                      theorem NonUnitalSubsemiring.mem_mk' {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {sg : Subsemigroup R} (hg : sg = s) {sa : AddSubmonoid R} (ha : sa = s) {x : R} :
                      x NonUnitalSubsemiring.mk' s sg hg sa ha x s
                      @[simp]
                      theorem NonUnitalSubsemiring.mk'_toSubsemigroup {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {sg : Subsemigroup R} (hg : sg = s) {sa : AddSubmonoid R} (ha : sa = s) :
                      @[simp]
                      theorem NonUnitalSubsemiring.mk'_toAddSubmonoid {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {sg : Subsemigroup R} (hg : sg = s) {sa : AddSubmonoid R} (ha : sa = s) :
                      @[simp]
                      theorem NonUnitalSubsemiring.coe_add {R : Type u} [NonUnitalNonAssocSemiring R] (s : NonUnitalSubsemiring R) (x y : s) :
                      ↑(x + y) = x + y
                      @[simp]
                      theorem NonUnitalSubsemiring.coe_mul {R : Type u} [NonUnitalNonAssocSemiring R] (s : NonUnitalSubsemiring R) (x y : s) :
                      ↑(x * y) = x * y

                      Note: currently, there are no ordered versions of non-unital rings.

                      The non-unital subsemiring R of the non-unital semiring R.

                      Equations

                        The inf of two non-unital subsemirings is their intersection.

                        Equations
                          @[simp]
                          theorem NonUnitalSubsemiring.coe_inf {R : Type u} [NonUnitalNonAssocSemiring R] (p p' : NonUnitalSubsemiring R) :
                          (pp') = p p'
                          @[simp]
                          theorem NonUnitalSubsemiring.mem_inf {R : Type u} [NonUnitalNonAssocSemiring R] {p p' : NonUnitalSubsemiring R} {x : R} :
                          x pp' x p x p'
                          def NonUnitalRingHom.codRestrict {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] {F : Type u_1} [FunLike F R S] [NonUnitalNonAssocSemiring S] [NonUnitalRingHomClass F R S] {S' : Type u_2} [SetLike S' S] [NonUnitalSubsemiringClass S' S] (f : F) (s : S') (h : ∀ (x : R), f x s) :
                          R →ₙ+* s

                          Restriction of a non-unital ring homomorphism to a non-unital subsemiring of the codomain.

                          Equations
                            Instances For

                              The non-unital subsemiring of elements x : R such that f x = g x

                              Equations
                                Instances For

                                  The non-unital ring homomorphism associated to an inclusion of non-unital subsemirings.

                                  Equations
                                    Instances For