Documentation

Mathlib.RingTheory.SimpleModule.WedderburnArtin

Wedderburn–Artin Theorem #

Main results #

A simple ring is semisimple iff it is Artinian, iff it has a minimal left ideal.

The Wedderburn–Artin Theorem: an Artinian simple ring is isomorphic to a matrix ring over the opposite of the endomorphism ring of its simple module.

theorem IsSimpleRing.exists_ringEquiv_matrix_divisionRing (R : Type u) [Ring R] [IsSimpleRing R] [IsArtinianRing R] :
βˆƒ (n : β„•) (_ : NeZero n) (D : Type u) (x : DivisionRing D), Nonempty (R ≃+* Matrix (Fin n) (Fin n) D)

The Wedderburn–Artin Theorem: an Artinian simple ring is isomorphic to a matrix ring over a division ring.

theorem IsSimpleRing.exists_algEquiv_matrix_end_mulOpposite (Rβ‚€ : Type u_1) (R : Type u) [CommSemiring Rβ‚€] [Ring R] [Algebra Rβ‚€ R] [IsSimpleRing R] [IsArtinianRing R] :
βˆƒ (n : β„•) (_ : NeZero n) (I : Ideal R) (_ : IsSimpleModule R β†₯I), Nonempty (R ≃ₐ[Rβ‚€] Matrix (Fin n) (Fin n) (Module.End R β†₯I)ᡐᡒᡖ)

The Wedderburn–Artin Theorem, algebra form: an Artinian simple algebra is isomorphic to a matrix algebra over the opposite of the endomorphism algebra of its simple module.

theorem IsSimpleRing.exists_algEquiv_matrix_divisionRing (Rβ‚€ : Type u_1) (R : Type u) [CommSemiring Rβ‚€] [Ring R] [Algebra Rβ‚€ R] [IsSimpleRing R] [IsArtinianRing R] :
βˆƒ (n : β„•) (_ : NeZero n) (D : Type u) (x : DivisionRing D) (x_1 : Algebra Rβ‚€ D), Nonempty (R ≃ₐ[Rβ‚€] Matrix (Fin n) (Fin n) D)

The Wedderburn–Artin Theorem, algebra form: an Artinian simple algebra is isomorphic to a matrix algebra over a division algebra.

theorem IsSimpleRing.exists_algEquiv_matrix_divisionRing_finite (Rβ‚€ : Type u_1) (R : Type u) [CommSemiring Rβ‚€] [Ring R] [Algebra Rβ‚€ R] [IsSimpleRing R] [IsArtinianRing R] [Module.Finite Rβ‚€ R] :
βˆƒ (n : β„•) (_ : NeZero n) (D : Type u) (x : DivisionRing D) (x_1 : Algebra Rβ‚€ D) (_ : Module.Finite Rβ‚€ D), Nonempty (R ≃ₐ[Rβ‚€] Matrix (Fin n) (Fin n) D)

The Wedderburn–Artin Theorem, algebra form, finite case: a finite Artinian simple algebra is isomorphic to a matrix algebra over a finite division algebra.

theorem IsSemisimpleModule.exists_end_algEquiv_pi_matrix_end (Rβ‚€ : Type u_1) (R : Type u) [CommSemiring Rβ‚€] [Ring R] [Algebra Rβ‚€ R] (M : Type v) [AddCommGroup M] [Module Rβ‚€ M] [Module R M] [IsScalarTower Rβ‚€ R M] [IsSemisimpleModule R M] [Module.Finite R M] :
βˆƒ (n : β„•) (S : Fin n β†’ Submodule R M) (d : Fin n β†’ β„•), (βˆ€ (i : Fin n), IsSimpleModule R β†₯(S i)) ∧ (βˆ€ (i : Fin n), NeZero (d i)) ∧ Nonempty (Module.End R M ≃ₐ[Rβ‚€] (i : Fin n) β†’ Matrix (Fin (d i)) (Fin (d i)) (Module.End R β†₯(S i)))
theorem IsSemisimpleModule.exists_end_ringEquiv_pi_matrix_end (R : Type u) [Ring R] (M : Type v) [AddCommGroup M] [Module R M] [IsSemisimpleModule R M] [Module.Finite R M] :
βˆƒ (n : β„•) (S : Fin n β†’ Submodule R M) (d : Fin n β†’ β„•), (βˆ€ (i : Fin n), IsSimpleModule R β†₯(S i)) ∧ (βˆ€ (i : Fin n), NeZero (d i)) ∧ Nonempty (Module.End R M ≃+* ((i : Fin n) β†’ Matrix (Fin (d i)) (Fin (d i)) (Module.End R β†₯(S i))))
@[deprecated IsSemisimpleModule.exists_end_algEquiv_pi_matrix_end (since := "2025-11-16")]
theorem IsSemisimpleModule.exists_end_algEquiv (Rβ‚€ : Type u_1) (R : Type u) [CommSemiring Rβ‚€] [Ring R] [Algebra Rβ‚€ R] (M : Type v) [AddCommGroup M] [Module Rβ‚€ M] [Module R M] [IsScalarTower Rβ‚€ R M] [IsSemisimpleModule R M] [Module.Finite R M] :
βˆƒ (n : β„•) (S : Fin n β†’ Submodule R M) (d : Fin n β†’ β„•), (βˆ€ (i : Fin n), IsSimpleModule R β†₯(S i)) ∧ (βˆ€ (i : Fin n), NeZero (d i)) ∧ Nonempty (Module.End R M ≃ₐ[Rβ‚€] (i : Fin n) β†’ Matrix (Fin (d i)) (Fin (d i)) (Module.End R β†₯(S i)))

Alias of IsSemisimpleModule.exists_end_algEquiv_pi_matrix_end.

@[deprecated IsSemisimpleModule.exists_end_ringEquiv_pi_matrix_end (since := "2025-11-16")]
theorem IsSemisimpleModule.exists_end_ringEquiv (R : Type u) [Ring R] (M : Type v) [AddCommGroup M] [Module R M] [IsSemisimpleModule R M] [Module.Finite R M] :
βˆƒ (n : β„•) (S : Fin n β†’ Submodule R M) (d : Fin n β†’ β„•), (βˆ€ (i : Fin n), IsSimpleModule R β†₯(S i)) ∧ (βˆ€ (i : Fin n), NeZero (d i)) ∧ Nonempty (Module.End R M ≃+* ((i : Fin n) β†’ Matrix (Fin (d i)) (Fin (d i)) (Module.End R β†₯(S i))))

Alias of IsSemisimpleModule.exists_end_ringEquiv_pi_matrix_end.

theorem IsSemisimpleModule.exists_end_algEquiv_pi_matrix_divisionRing (Rβ‚€ : Type u_1) (R : Type u) [CommSemiring Rβ‚€] [Ring R] [Algebra Rβ‚€ R] (M : Type v) [AddCommGroup M] [Module Rβ‚€ M] [Module R M] [IsScalarTower Rβ‚€ R M] [IsSemisimpleModule R M] [Module.Finite R M] :
βˆƒ (n : β„•) (D : Fin n β†’ Type v) (d : Fin n β†’ β„•) (x : (i : Fin n) β†’ DivisionRing (D i)) (x_1 : (i : Fin n) β†’ Algebra Rβ‚€ (D i)), (βˆ€ (i : Fin n), NeZero (d i)) ∧ Nonempty (Module.End R M ≃ₐ[Rβ‚€] (i : Fin n) β†’ Matrix (Fin (d i)) (Fin (d i)) (D i))
theorem IsSemisimpleModule.exists_end_ringEquiv_pi_matrix_divisionRing (R : Type u) [Ring R] (M : Type v) [AddCommGroup M] [Module R M] [IsSemisimpleModule R M] [Module.Finite R M] :
βˆƒ (n : β„•) (D : Fin n β†’ Type v) (d : Fin n β†’ β„•) (x : (i : Fin n) β†’ DivisionRing (D i)), (βˆ€ (i : Fin n), NeZero (d i)) ∧ Nonempty (Module.End R M ≃+* ((i : Fin n) β†’ Matrix (Fin (d i)) (Fin (d i)) (D i)))
theorem IsSemisimpleRing.exists_algEquiv_pi_matrix_end_mulOpposite (Rβ‚€ : Type u_1) (R : Type u) [CommSemiring Rβ‚€] [Ring R] [Algebra Rβ‚€ R] [IsSemisimpleRing R] :
βˆƒ (n : β„•) (S : Fin n β†’ Ideal R) (d : Fin n β†’ β„•), (βˆ€ (i : Fin n), IsSimpleModule R β†₯(S i)) ∧ (βˆ€ (i : Fin n), NeZero (d i)) ∧ Nonempty (R ≃ₐ[Rβ‚€] (i : Fin n) β†’ Matrix (Fin (d i)) (Fin (d i)) (Module.End R β†₯(S i))ᡐᡒᡖ)

The Wedderburn–Artin Theorem, algebra form: a semisimple algebra is isomorphic to a product of matrix algebras over the opposite of the endomorphism algebras of its simple modules.

theorem IsSemisimpleRing.exists_algEquiv_pi_matrix_divisionRing (Rβ‚€ : Type u_1) (R : Type u) [CommSemiring Rβ‚€] [Ring R] [Algebra Rβ‚€ R] [IsSemisimpleRing R] :
βˆƒ (n : β„•) (D : Fin n β†’ Type u) (d : Fin n β†’ β„•) (x : (i : Fin n) β†’ DivisionRing (D i)) (x_1 : (i : Fin n) β†’ Algebra Rβ‚€ (D i)), (βˆ€ (i : Fin n), NeZero (d i)) ∧ Nonempty (R ≃ₐ[Rβ‚€] (i : Fin n) β†’ Matrix (Fin (d i)) (Fin (d i)) (D i))

The Wedderburn–Artin Theorem, algebra form: a semisimple algebra is isomorphic to a product of matrix algebras over division algebras.

theorem IsSemisimpleRing.exists_algEquiv_pi_matrix_divisionRing_finite (Rβ‚€ : Type u_1) (R : Type u) [CommSemiring Rβ‚€] [Ring R] [Algebra Rβ‚€ R] [IsSemisimpleRing R] [Module.Finite Rβ‚€ R] :
βˆƒ (n : β„•) (D : Fin n β†’ Type u) (d : Fin n β†’ β„•) (x : (i : Fin n) β†’ DivisionRing (D i)) (x_1 : (i : Fin n) β†’ Algebra Rβ‚€ (D i)) (_ : βˆ€ (i : Fin n), Module.Finite Rβ‚€ (D i)), (βˆ€ (i : Fin n), NeZero (d i)) ∧ Nonempty (R ≃ₐ[Rβ‚€] (i : Fin n) β†’ Matrix (Fin (d i)) (Fin (d i)) (D i))

The Wedderburn–Artin Theorem, algebra form, finite case: a finite semisimple algebra is isomorphic to a product of matrix algebras over finite division algebras.

theorem IsSemisimpleRing.exists_ringEquiv_pi_matrix_end_mulOpposite (R : Type u) [Ring R] [IsSemisimpleRing R] :
βˆƒ (n : β„•) (D : Fin n β†’ Ideal R) (d : Fin n β†’ β„•), (βˆ€ (i : Fin n), IsSimpleModule R β†₯(D i)) ∧ (βˆ€ (i : Fin n), NeZero (d i)) ∧ Nonempty (R ≃+* ((i : Fin n) β†’ Matrix (Fin (d i)) (Fin (d i)) (Module.End R β†₯(D i))ᡐᡒᡖ))

The Wedderburn–Artin Theorem: a semisimple ring is isomorphic to a product of matrix rings over the opposite of the endomorphism rings of its simple modules.

theorem IsSemisimpleRing.exists_ringEquiv_pi_matrix_divisionRing (R : Type u) [Ring R] [IsSemisimpleRing R] :
βˆƒ (n : β„•) (D : Fin n β†’ Type u) (d : Fin n β†’ β„•) (x : (i : Fin n) β†’ DivisionRing (D i)), (βˆ€ (i : Fin n), NeZero (d i)) ∧ Nonempty (R ≃+* ((i : Fin n) β†’ Matrix (Fin (d i)) (Fin (d i)) (D i)))

The Wedderburn–Artin Theorem: a semisimple ring is isomorphic to a product of matrix rings over division rings.

theorem isSemisimpleRing_iff_pi_matrix_divisionRing {R : Type u} [Ring R] :
IsSemisimpleRing R ↔ βˆƒ (n : β„•) (D : Fin n β†’ Type u) (d : Fin n β†’ β„•) (x : (i : Fin n) β†’ DivisionRing (D i)), Nonempty (R ≃+* ((i : Fin n) β†’ Matrix (Fin (d i)) (Fin (d i)) (D i)))

The existence part of the Artin–Wedderburn theorem.