Documentation

Mathlib.RingTheory.WittVector.Verschiebung

The Verschiebung operator #

References #

def WittVector.verschiebungFun {p : β„•} {R : Type u_1} [CommRing R] (x : WittVector p R) :

verschiebungFun x shifts the coefficients of x up by one, by inserting 0 as the 0th coefficient. x.coeff i then becomes (verschiebungFun x).coeff (i + 1).

verschiebungFun is the underlying function of the additive monoid hom WittVector.verschiebung.

Equations
    Instances For

      The 0th Verschiebung polynomial is 0. For n > 0, the nth Verschiebung polynomial is the variable X (n-1).

      Equations
        Instances For
          noncomputable def WittVector.verschiebung {p : β„•} {R : Type u_1} [CommRing R] [hp : Fact (Nat.Prime p)] :

          verschiebung x shifts the coefficients of x up by one, by inserting 0 as the 0th coefficient. x.coeff i then becomes (verschiebung x).coeff (i + 1).

          This is an additive monoid hom with underlying function verschiebung_fun.

          Equations
            Instances For
              theorem WittVector.verschiebung_isPoly {p : β„•} [hp : Fact (Nat.Prime p)] :
              IsPoly p fun (x : Type u_3) (x_1 : CommRing x) => ⇑verschiebung

              WittVector.verschiebung is a polynomial function.

              @[simp]
              theorem WittVector.map_verschiebung {p : β„•} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [hp : Fact (Nat.Prime p)] (f : R β†’+* S) (x : WittVector p R) :

              verschiebung is a natural transformation

              @[simp]
              theorem WittVector.verschiebung_coeff_succ {p : β„•} {R : Type u_1} [CommRing R] [hp : Fact (Nat.Prime p)] (x : WittVector p R) (n : β„•) :