Documentation

Mathlib.SetTheory.ZFC.Cardinal

Cardinalities of ZFC sets #

In this file, we define the cardinalities of ZFC sets as ZFSet.{u} β†’ Cardinal.{u}.

Definitions #

The cardinality of a ZFC set.

Equations
    Instances For

      ZFSet.card x is equal to the cardinality of x as a set of ZFSets.

      theorem ZFSet.card_insert {x y : ZFSet.{u}} (h : x βˆ‰ y) :
      (insert x y).card = y.card + 1
      theorem ZFSet.iSup_card_le_card_iUnion {Ξ± : Type u} [Small.{v, u} Ξ±] {f : Ξ± β†’ ZFSet.{v}} :
      ⨆ (i : Ξ±), (f i).card ≀ (iUnion fun (i : Ξ±) => f i).card
      theorem ZFSet.lift_card_iUnion_le_sum_card {Ξ± : Type u} [Small.{v, u} Ξ±] {f : Ξ± β†’ ZFSet.{v}} :
      Cardinal.lift.{u, v} (iUnion fun (i : Ξ±) => f i).card ≀ Cardinal.sum fun (i : Ξ±) => (f i).card