Documentation

Mathlib.Tactic.ComputeAsymptotics.Multiseries.Majorized

Majorized predicate #

This file defines the Majorized predicate, along with a few basic lemmas.

Main definitions #

Majorized f g exp for real functions f and g means that for any exp' > exp, f =o[atTop] g ^ exp'. This is used to define the MultiseriesExpansion.Approximates predicate. The naming Majorized is non-standard because this notion is invented for the purposes of this tactic, and does not exists in literature.

Equations
    Instances For
      theorem Tactic.ComputeAsymptotics.Majorized.of_eventuallyEq {f g b : โ„ โ†’ โ„} {exp : โ„} (h_eq : g =แถ [Filter.atTop] f) (h : Majorized f b exp) :
      Majorized g b exp

      Replacing the first argument of Majorized by an eventually equal function preserves it.

      For any function f tending to infinity, f ^ exp is majorized by f with exponent exp.

      theorem Tactic.ComputeAsymptotics.Majorized.of_le {f b : โ„ โ†’ โ„} {exp1 exp2 : โ„} (h_lt : exp1 โ‰ค exp2) (h : Majorized f b exp1) :
      Majorized f b exp2

      If f is majorized with exponent expโ‚, then it is majorized with any expโ‚‚ โ‰ฅ expโ‚.

      If f is majorized with a negative exponent, then it tends to zero.

      Constants are majorized with exponent exp = 0 by any functions which tends to infinity.

      The zero function is majorized with any exponent.

      theorem Tactic.ComputeAsymptotics.Majorized.smul {f b : โ„ โ†’ โ„} {exp : โ„} (h : Majorized f b exp) {c : โ„} :
      Majorized (c โ€ข f) b exp

      c โ€ข f is majorized with the same exponent as f for any constant c.

      theorem Tactic.ComputeAsymptotics.Majorized.add {f g b : โ„ โ†’ โ„} {exp f_exp g_exp : โ„} (hf : Majorized f b f_exp) (hg : Majorized g b g_exp) (hf_exp : f_exp โ‰ค exp) (hg_exp : g_exp โ‰ค exp) :
      Majorized (f + g) b exp

      The sum of two functions that are majorized with exponents f_exp and g_exp is majorized with exponent exp whenever exp โ‰ฅ max f_exp g_exp.

      theorem Tactic.ComputeAsymptotics.Majorized.mul {f g b : โ„ โ†’ โ„} {f_exp g_exp : โ„} (hf : Majorized f b f_exp) (hg : Majorized g b g_exp) (h_pos : โˆ€แถ  (t : โ„) in Filter.atTop, 0 < b t) :
      Majorized (f * g) b (f_exp + g_exp)

      The product of two functions that are majorized with exponents f_exp and g_exp is majorized with exponent f_exp + g_exp.

      theorem Tactic.ComputeAsymptotics.Majorized.mul_bounded {f g basis_hd : โ„ โ†’ โ„} {exp : โ„} (hf : Majorized f basis_hd exp) (hg : g =O[Filter.atTop] fun (x : โ„) => 1) :
      Majorized (f * g) basis_hd exp