Documentation

Mathlib.Tactic.Simproc.Factors

simproc for Nat.primeFactorsList #

Note that since norm_num can only produce numerals, we can't register this as a norm_num extension.

A proof of the partial computation of primeFactorsList. Asserts that l is a sorted list of primes multiplying to n and lower bounded by a prime p.

Equations
    Instances For

      The argument explicitness in this section is chosen to make only the numerals in the factors list appear in the proof term.

      theorem Mathlib.Meta.Simproc.FactorsHelper.cons_of_le {n m : β„•} (a : β„•) {b : β„•} {l : List β„•} (h₁ : NormNum.IsNat (b * m) n) (hβ‚‚ : a ≀ b) (h₃ : b.minFac = b) (H : FactorsHelper m b l) :
      FactorsHelper n a (b :: l)
      theorem Mathlib.Meta.Simproc.FactorsHelper.cons {n m a : β„•} (b : β„•) {l : List β„•} (h₁ : NormNum.IsNat (b * m) n) (hβ‚‚ : a.blt b = true) (h₃ : NormNum.IsNat b.minFac b) (H : FactorsHelper m b l) :
      FactorsHelper n a (b :: l)
      def Mathlib.Meta.Simproc.evalPrimeFactorsList {en enl : Q(β„•)} (hn : Q(NormNum.IsNat Β«$enΒ» Β«$enlΒ»)) :
      Lean.MetaM ((l : Q(List β„•)) Γ— Q(Β«$enΒ».primeFactorsList = Β«$lΒ»))

      Given a natural number n, returns (l, ⊒ Nat.primeFactorsList n = l).

      Equations
        Instances For

          A simproc for terms of the form Nat.primeFactorsList (OfNat.ofNat n).

          Equations
            Instances For