Documentation

Mathlib.Topology.Algebra.Affine

Topological properties of affine spaces and maps #

This file contains a few facts regarding the continuity of affine maps.

If f is an affine map, then its linear part is continuous iff f is continuous.

@[deprecated AffineMap.continuous_linear_iff (since := "2025-09-13")]

An affine map is continuous iff its underlying linear map is continuous. See also AffineMap.continuous_linear_iff.

If f is an affine map, then its linear part is an open map iff f is an open map.

theorem AffineMap.lineMap_continuous_uncurry {R : Type u_1} {V : Type u_2} {P : Type u_3} [AddCommGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [Ring R] [Module R V] [TopologicalSpace R] [ContinuousSMul R V] :
Continuous fun (pqt : P ร— P ร— R) => (lineMap pqt.1 pqt.2.1) pqt.2.2

The line map is continuous in all arguments.

theorem AffineMap.lineMap_continuous {R : Type u_1} {V : Type u_2} {P : Type u_3} [AddCommGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [Ring R] [Module R V] [TopologicalSpace R] [ContinuousSMul R V] {p q : P} :
Continuous โ‡‘(lineMap p q)

The line map is continuous.

theorem Filter.Tendsto.lineMap {R : Type u_1} {V : Type u_2} {P : Type u_3} [AddCommGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [Ring R] [Module R V] [TopologicalSpace R] [ContinuousSMul R V] {ฮฑ : Type u_6} {l : Filter ฮฑ} {fโ‚ fโ‚‚ : ฮฑ โ†’ P} {g : ฮฑ โ†’ R} {pโ‚ pโ‚‚ : P} {c : R} (hโ‚ : Tendsto fโ‚ l (nhds pโ‚)) (hโ‚‚ : Tendsto fโ‚‚ l (nhds pโ‚‚)) (hg : Tendsto g l (nhds c)) :
Tendsto (fun (x : ฮฑ) => (AffineMap.lineMap (fโ‚ x) (fโ‚‚ x)) (g x)) l (nhds ((AffineMap.lineMap pโ‚ pโ‚‚) c))
theorem Filter.Tendsto.midpoint {R : Type u_1} {V : Type u_2} {P : Type u_3} [AddCommGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [Ring R] [Module R V] [TopologicalSpace R] [ContinuousSMul R V] {ฮฑ : Type u_6} {l : Filter ฮฑ} [Invertible 2] {fโ‚ fโ‚‚ : ฮฑ โ†’ P} {pโ‚ pโ‚‚ : P} (hโ‚ : Tendsto fโ‚ l (nhds pโ‚)) (hโ‚‚ : Tendsto fโ‚‚ l (nhds pโ‚‚)) :
Tendsto (fun (x : ฮฑ) => _root_.midpoint R (fโ‚ x) (fโ‚‚ x)) l (nhds (_root_.midpoint R pโ‚ pโ‚‚))
theorem ContinuousWithinAt.lineMap {R : Type u_1} {V : Type u_2} {P : Type u_3} [AddCommGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [Ring R] [Module R V] [TopologicalSpace R] [ContinuousSMul R V] {X : Type u_6} [TopologicalSpace X] {fโ‚ fโ‚‚ : X โ†’ P} {g : X โ†’ R} {s : Set X} {x : X} (hโ‚ : ContinuousWithinAt fโ‚ s x) (hโ‚‚ : ContinuousWithinAt fโ‚‚ s x) (hg : ContinuousWithinAt g s x) :
ContinuousWithinAt (fun (x : X) => (AffineMap.lineMap (fโ‚ x) (fโ‚‚ x)) (g x)) s x
theorem ContinuousAt.lineMap {R : Type u_1} {V : Type u_2} {P : Type u_3} [AddCommGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [Ring R] [Module R V] [TopologicalSpace R] [ContinuousSMul R V] {X : Type u_6} [TopologicalSpace X] {fโ‚ fโ‚‚ : X โ†’ P} {g : X โ†’ R} {x : X} (hโ‚ : ContinuousAt fโ‚ x) (hโ‚‚ : ContinuousAt fโ‚‚ x) (hg : ContinuousAt g x) :
ContinuousAt (fun (x : X) => (AffineMap.lineMap (fโ‚ x) (fโ‚‚ x)) (g x)) x
theorem ContinuousOn.lineMap {R : Type u_1} {V : Type u_2} {P : Type u_3} [AddCommGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [Ring R] [Module R V] [TopologicalSpace R] [ContinuousSMul R V] {X : Type u_6} [TopologicalSpace X] {fโ‚ fโ‚‚ : X โ†’ P} {g : X โ†’ R} {s : Set X} (hโ‚ : ContinuousOn fโ‚ s) (hโ‚‚ : ContinuousOn fโ‚‚ s) (hg : ContinuousOn g s) :
ContinuousOn (fun (x : X) => (AffineMap.lineMap (fโ‚ x) (fโ‚‚ x)) (g x)) s
theorem Continuous.lineMap {R : Type u_1} {V : Type u_2} {P : Type u_3} [AddCommGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [Ring R] [Module R V] [TopologicalSpace R] [ContinuousSMul R V] {X : Type u_6} [TopologicalSpace X] {fโ‚ fโ‚‚ : X โ†’ P} {g : X โ†’ R} (hโ‚ : Continuous fโ‚) (hโ‚‚ : Continuous fโ‚‚) (hg : Continuous g) :
Continuous fun (x : X) => (AffineMap.lineMap (fโ‚ x) (fโ‚‚ x)) (g x)
theorem AffineMap.homothety_isOpenMap {R : Type u_1} {V : Type u_2} {P : Type u_3} [AddCommGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [Field R] [Module R V] [ContinuousConstSMul R V] (x : P) (t : R) (ht : t โ‰  0) :
IsOpenMap โ‡‘(homothety x t)