Closed subgroups of a topological group #
This file builds the frame of closed subgroups in a topological group G,
and its additive version ClosedAddSubgroup.
Main definitions and results #
normalCore_isClosed: ThenormalCoreof a closed subgroup is closed.finindex_closedSubgroup_isOpen: A closed subgroup with finite index is open.
TODO #
Actually provide the Order.Frame (ClosedSubgroup G) instance.
The type of closed subgroups of a topological group.
Instances For
theorem
ClosedSubgroup.ext_iff
{G : Type u}
{instβ : Group G}
{instβΒΉ : TopologicalSpace G}
{x y : ClosedSubgroup G}
:
theorem
ClosedSubgroup.ext
{G : Type u}
{instβ : Group G}
{instβΒΉ : TopologicalSpace G}
{x y : ClosedSubgroup G}
(carrier : (βx).carrier = (βy).carrier)
:
structure
ClosedAddSubgroup
(G : Type u)
[AddGroup G]
[TopologicalSpace G]
extends AddSubgroup G :
Type u
The type of closed subgroups of an additive topological group.
Instances For
theorem
ClosedAddSubgroup.ext
{G : Type u}
{instβ : AddGroup G}
{instβΒΉ : TopologicalSpace G}
{x y : ClosedAddSubgroup G}
(carrier : (βx).carrier = (βy).carrier)
:
theorem
ClosedAddSubgroup.ext_iff
{G : Type u}
{instβ : AddGroup G}
{instβΒΉ : TopologicalSpace G}
{x y : ClosedAddSubgroup G}
:
instance
ClosedSubgroup.instSetLike
(G : Type u)
[Group G]
[TopologicalSpace G]
:
SetLike (ClosedSubgroup G) G
Equations
instance
ClosedAddSubgroup.instSetLike
(G : Type u)
[AddGroup G]
[TopologicalSpace G]
:
SetLike (ClosedAddSubgroup G) G
Equations
Equations
Equations
instance
ClosedSubgroup.instSubgroupClass
(G : Type u)
[Group G]
[TopologicalSpace G]
:
SubgroupClass (ClosedSubgroup G) G
instance
ClosedSubgroup.instCoeSubgroup
(G : Type u)
[Group G]
[TopologicalSpace G]
:
Coe (ClosedSubgroup G) (Subgroup G)
Equations
instance
ClosedAddSubgroup.instCoeAddSubgroup
(G : Type u)
[AddGroup G]
[TopologicalSpace G]
:
Coe (ClosedAddSubgroup G) (AddSubgroup G)
Equations
instance
ClosedSubgroup.instInfClosedSubgroup
(G : Type u)
[Group G]
[TopologicalSpace G]
:
Min (ClosedSubgroup G)
Equations
instance
ClosedAddSubgroup.instInfClosedAddSubgroup
(G : Type u)
[AddGroup G]
[TopologicalSpace G]
:
Min (ClosedAddSubgroup G)
Equations
instance
ClosedSubgroup.instSemilatticeInfClosedSubgroup
(G : Type u)
[Group G]
[TopologicalSpace G]
:
Equations
instance
ClosedAddSubgroup.instSemilatticeInfClosedAddSubgroup
(G : Type u)
[AddGroup G]
[TopologicalSpace G]
:
Equations
instance
ClosedSubgroup.instCompactSpaceSubtypeMem
(G : Type u)
[Group G]
[TopologicalSpace G]
[CompactSpace G]
(H : ClosedSubgroup G)
:
CompactSpace β₯H
instance
ClosedAddSubgroup.instCompactSpaceSubtypeMem
(G : Type u)
[AddGroup G]
[TopologicalSpace G]
[CompactSpace G]
(H : ClosedAddSubgroup G)
:
CompactSpace β₯H
theorem
Subgroup.normalCore_isClosed
{G : Type u}
[Group G]
[TopologicalSpace G]
[ContinuousMul G]
(H : Subgroup G)
(h : IsClosed βH)
:
IsClosed βH.normalCore
theorem
Subgroup.isOpen_of_isClosed_of_finiteIndex
{G : Type u}
[Group G]
[TopologicalSpace G]
[ContinuousMul G]
(H : Subgroup G)
[H.FiniteIndex]
(h : IsClosed βH)
:
IsOpen βH
theorem
AddSubgroup.isOpen_of_isClosed_of_finiteIndex
{G : Type u}
[AddGroup G]
[TopologicalSpace G]
[ContinuousAdd G]
(H : AddSubgroup G)
[H.FiniteIndex]
(h : IsClosed βH)
:
IsOpen βH