Documentation

Mathlib.Topology.Algebra.Group.CompactOpen

The compact-open topology on continuous monoid morphisms. #

theorem ContinuousMonoidHom.range_toContinuousMap (A : Type u_2) (B : Type u_3) [Monoid A] [Monoid B] [TopologicalSpace A] [TopologicalSpace B] :
Set.range toContinuousMap = {f : C(A, B) | f 1 = 1 ∀ (x y : A), f (x * y) = f x * f y}
theorem ContinuousMonoidHom.continuous_of_continuous_uncurry {B : Type u_3} {C : Type u_4} [Monoid B] [Monoid C] [TopologicalSpace B] [TopologicalSpace C] {A : Type u_7} [TopologicalSpace A] (f : AB →ₜ* C) (h : Continuous (Function.uncurry fun (x : A) (y : B) => (f x) y)) :
theorem ContinuousAddMonoidHom.continuous_of_continuous_uncurry {B : Type u_3} {C : Type u_4} [AddMonoid B] [AddMonoid C] [TopologicalSpace B] [TopologicalSpace C] {A : Type u_7} [TopologicalSpace A] (f : AB →ₜ+ C) (h : Continuous (Function.uncurry fun (x : A) (y : B) => (f x) y)) :

ContinuousMonoidHom _ f is a functor.

Equations
    Instances For

      ContinuousMonoidHom f _ is a functor.

      Equations
        Instances For
          theorem ContinuousMonoidHom.locallyCompactSpace_of_equicontinuousAt {X : Type u_7} {Y : Type u_8} [TopologicalSpace X] [Group X] [IsTopologicalGroup X] [UniformSpace Y] [CommGroup Y] [IsUniformGroup Y] [T0Space Y] [CompactSpace Y] (U : Set X) (V : Set Y) (hU : IsCompact U) (hV : V nhds 1) (h : EquicontinuousAt (fun (f : {f : X →* Y | Set.MapsTo (⇑f) U V}) => f) 1) :
          theorem ContinuousMonoidHom.locallyCompactSpace_of_hasBasis {X : Type u_7} {Y : Type u_8} [TopologicalSpace X] [Group X] [IsTopologicalGroup X] [UniformSpace Y] [CommGroup Y] [IsUniformGroup Y] [T0Space Y] [CompactSpace Y] [LocallyCompactSpace X] (V : Set Y) (hV : ∀ {n : } {x : Y}, x V nx * x V nx V (n + 1)) (hVo : (nhds 1).HasBasis (fun (x : ) => True) V) :
          theorem ContinuousAddMonoidHom.locallyCompactSpace_of_hasBasis {X : Type u_7} {Y : Type u_8} [TopologicalSpace X] [AddGroup X] [IsTopologicalAddGroup X] [UniformSpace Y] [AddCommGroup Y] [IsUniformAddGroup Y] [T0Space Y] [CompactSpace Y] [LocallyCompactSpace X] (V : Set Y) (hV : ∀ {n : } {x : Y}, x V nx + x V nx V (n + 1)) (hVo : (nhds 0).HasBasis (fun (x : ) => True) V) :