Documentation

Mathlib.Topology.Algebra.Module.Determinant

The determinant of a continuous linear map. #

@[reducible, inline]
noncomputable abbrev ContinuousLinearMap.det {R : Type u_1} [CommRing R] {M : Type u_2} [TopologicalSpace M] [AddCommGroup M] [Module R M] (A : M โ†’L[R] M) :
R

The determinant of a continuous linear map, mainly as a convenience device to be able to write A.det instead of (A : M โ†’โ‚—[R] M).det.

Equations
    Instances For
      theorem ContinuousLinearMap.det_pi {ฮน : Type u_1} {R : Type u_2} {M : Type u_3} [Fintype ฮน] [CommRing R] [AddCommGroup M] [TopologicalSpace M] [Module R M] [Module.Free R M] [Module.Finite R M] (f : ฮน โ†’ M โ†’L[R] M) :
      (pi fun (i : ฮน) => (f i).comp (proj i)).det = โˆ i : ฮน, (f i).det
      theorem ContinuousLinearMap.det_smulRight {๐•œ : Type u_1} [CommRing ๐•œ] [TopologicalSpace ๐•œ] [ContinuousMul ๐•œ] (f : ๐•œ โ†’L[๐•œ] ๐•œ) (v : ๐•œ) :
      (f.smulRight v).det = f 1 * v
      theorem ContinuousLinearMap.det_toSpanSingleton {๐•œ : Type u_1} [CommRing ๐•œ] [TopologicalSpace ๐•œ] [ContinuousMul ๐•œ] (v : ๐•œ) :
      (toSpanSingleton ๐•œ v).det = v
      @[deprecated ContinuousLinearMap.det_toSpanSingleton (since := "2025-12-18")]
      theorem ContinuousLinearMap.det_one_smulRight {๐•œ : Type u_1} [CommRing ๐•œ] [TopologicalSpace ๐•œ] [ContinuousMul ๐•œ] (v : ๐•œ) :
      (toSpanSingleton ๐•œ v).det = v

      Alias of ContinuousLinearMap.det_toSpanSingleton.

      @[simp]
      theorem ContinuousLinearEquiv.det_coe_symm {R : Type u_1} [Field R] {M : Type u_2} [TopologicalSpace M] [AddCommGroup M] [Module R M] (A : M โ‰ƒL[R] M) :
      (โ†‘A.symm).det = (โ†‘A).detโปยน