The determinant of a continuous linear map. #
@[reducible, inline]
noncomputable abbrev
ContinuousLinearMap.det
{R : Type u_1}
[CommRing R]
{M : Type u_2}
[TopologicalSpace M]
[AddCommGroup M]
[Module R M]
(A : M โL[R] M)
:
R
The determinant of a continuous linear map, mainly as a convenience device to be able to
write A.det instead of (A : M โโ[R] M).det.
Equations
Instances For
theorem
ContinuousLinearMap.det_pi
{ฮน : Type u_1}
{R : Type u_2}
{M : Type u_3}
[Fintype ฮน]
[CommRing R]
[AddCommGroup M]
[TopologicalSpace M]
[Module R M]
[Module.Free R M]
[Module.Finite R M]
(f : ฮน โ M โL[R] M)
:
theorem
ContinuousLinearMap.det_smulRight
{๐ : Type u_1}
[CommRing ๐]
[TopologicalSpace ๐]
[ContinuousMul ๐]
(f : ๐ โL[๐] ๐)
(v : ๐)
:
theorem
ContinuousLinearMap.det_toSpanSingleton
{๐ : Type u_1}
[CommRing ๐]
[TopologicalSpace ๐]
[ContinuousMul ๐]
(v : ๐)
:
@[deprecated ContinuousLinearMap.det_toSpanSingleton (since := "2025-12-18")]
theorem
ContinuousLinearMap.det_one_smulRight
{๐ : Type u_1}
[CommRing ๐]
[TopologicalSpace ๐]
[ContinuousMul ๐]
(v : ๐)
:
Alias of ContinuousLinearMap.det_toSpanSingleton.
@[simp]
theorem
ContinuousLinearEquiv.det_coe_symm
{R : Type u_1}
[Field R]
{M : Type u_2}
[TopologicalSpace M]
[AddCommGroup M]
[Module R M]
(A : M โL[R] M)
: