Documentation

Mathlib.Topology.Category.TopCat.Basic

Category instance for topological spaces #

We introduce the bundled category TopCat of topological spaces together with the functors TopCat.discrete and TopCat.trivial from the category of types to TopCat which equip a type with the corresponding discrete, resp. trivial, topology. For a proof that these functors are left, resp. right adjoint to the forgetful functor, see Mathlib/Topology/Category/TopCat/Adjunctions.lean.

structure TopCat :
Type (u + 1)

The category of topological spaces.

Instances For
    theorem TopCat.coe_of (X : Type u) [TopologicalSpace X] :
    ↑{ carrier := X, str := inst✝ } = X
    theorem TopCat.of_carrier (X : TopCat) :
    { carrier := ↑X, str := X.str } = X
    structure TopCat.Hom (X Y : TopCat) :

    The type of morphisms in TopCat.

    Instances For
      theorem TopCat.Hom.ext_iff {X Y : TopCat} {x y : X.Hom Y} :
      x = y ↔ x.hom' = y.hom'
      theorem TopCat.Hom.ext {X Y : TopCat} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
      x = y
      @[reducible, inline]
      abbrev TopCat.Hom.hom {X Y : TopCat} (f : X.Hom Y) :
      C(↑X, ↑Y)

      Turn a morphism in TopCat back into a ContinuousMap.

      Equations
        Instances For
          @[reducible, inline]
          abbrev TopCat.ofHom {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) :
          { carrier := X, str := inst✝ } ⟢ { carrier := Y, str := inst✝¹ }

          Typecheck a ContinuousMap as a morphism in TopCat.

          Equations
            Instances For
              def TopCat.Hom.Simps.hom (X Y : TopCat) (f : X.Hom Y) :
              C(↑X, ↑Y)

              Use the ConcreteCategory.hom projection for @[simps] lemmas.

              Equations
                Instances For

                  The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                  theorem TopCat.hom_ext {X Y : TopCat} {f g : X ⟢ Y} (hf : Hom.hom f = Hom.hom g) :
                  f = g
                  theorem TopCat.ext {X Y : TopCat} {f g : X ⟢ Y} (w : βˆ€ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                  f = g
                  @[simp]
                  theorem TopCat.ofHom_hom {X Y : TopCat} (f : X ⟢ Y) :
                  @[simp]
                  theorem TopCat.coe_of_of {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] {f : C(X, Y)} {x : (CategoryTheory.forget TopCat).obj { carrier := X, str := inst✝ }} :
                  (ofHom f) x = f x

                  Replace a function coercion for a morphism TopCat.of X ⟢ TopCat.of Y with the definitionally equal function coercion for a continuous map C(X, Y).

                  The discrete topology on any type.

                  Equations
                    Instances For

                      The trivial topology on any type.

                      Equations
                        Instances For
                          def TopCat.isoOfHomeo {X Y : TopCat} (f : ↑X β‰ƒβ‚œ ↑Y) :
                          X β‰… Y

                          Any homeomorphisms induces an isomorphism in Top.

                          Equations
                            Instances For
                              @[simp]
                              theorem TopCat.isoOfHomeo_hom {X Y : TopCat} (f : ↑X β‰ƒβ‚œ ↑Y) :
                              (isoOfHomeo f).hom = ofHom ↑f
                              @[simp]
                              theorem TopCat.isoOfHomeo_inv {X Y : TopCat} (f : ↑X β‰ƒβ‚œ ↑Y) :
                              (isoOfHomeo f).inv = ofHom ↑f.symm
                              def TopCat.homeoOfIso {X Y : TopCat} (f : X β‰… Y) :
                              ↑X β‰ƒβ‚œ ↑Y

                              Any isomorphism in Top induces a homeomorphism.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem TopCat.of_isoOfHomeo {X Y : TopCat} (f : ↑X β‰ƒβ‚œ ↑Y) :