Documentation

Mathlib.Topology.FiberBundle.Constructions

Standard constructions on fiber bundles #

This file contains several standard constructions on fiber bundles:

Tags #

fiber bundle, fibre bundle, fiberwise product, pullback

The trivial bundle #

instance Bundle.Trivial.topologicalSpace (B : Type u_1) (F : Type u_2) [tโ‚ : TopologicalSpace B] [tโ‚‚ : TopologicalSpace F] :
Equations

    Homeomorphism between the total space of the trivial bundle and the Cartesian product.

    Equations
      Instances For
        @[simp]
        theorem Bundle.Trivial.homeomorphProd_apply (B : Type u_1) (F : Type u_2) [TopologicalSpace B] [TopologicalSpace F] (x : TotalSpace F fun (x : B) => F) :

        Local trivialization for trivial bundle.

        Equations
          Instances For
            @[simp]
            theorem Bundle.Trivial.trivialization_symm_apply (B : Type u_1) (F : Type u_2) [TopologicalSpace B] [TopologicalSpace F] [Zero F] (b : B) (f : F) :
            (trivialization B F).symm b f = f
            @[simp]
            theorem Bundle.Trivial.toOpenPartialHomeomorph_trivialization_symm_apply (B : Type u_1) (F : Type u_2) [TopologicalSpace B] [TopologicalSpace F] (v : B ร— F) :
            โ†‘(trivialization B F).symm v = { proj := v.1, snd := v.2 }

            Fiber bundle instance on the trivial bundle.

            Equations

              Fibrewise product of two bundles #

              instance FiberBundle.Prod.topologicalSpace {B : Type u_1} (Fโ‚ : Type u_2) (Eโ‚ : B โ†’ Type u_3) (Fโ‚‚ : Type u_4) (Eโ‚‚ : B โ†’ Type u_5) [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] :
              TopologicalSpace (Bundle.TotalSpace (Fโ‚ ร— Fโ‚‚) fun (x : B) => Eโ‚ x ร— Eโ‚‚ x)

              Equip the total space of the fiberwise product of two fiber bundles Eโ‚, Eโ‚‚ with the induced topology from the diagonal embedding into TotalSpace Fโ‚ Eโ‚ ร— TotalSpace Fโ‚‚ Eโ‚‚.

              Equations
                theorem FiberBundle.Prod.isInducing_diag {B : Type u_1} (Fโ‚ : Type u_2) (Eโ‚ : B โ†’ Type u_3) (Fโ‚‚ : Type u_4) (Eโ‚‚ : B โ†’ Type u_5) [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] :
                Topology.IsInducing fun (p : Bundle.TotalSpace (Fโ‚ ร— Fโ‚‚) fun (x : B) => Eโ‚ x ร— Eโ‚‚ x) => ({ proj := p.proj, snd := p.snd.1 }, { proj := p.proj, snd := p.snd.2 })

                The diagonal map from the total space of the fiberwise product of two fiber bundles Eโ‚, Eโ‚‚ into TotalSpace Fโ‚ Eโ‚ ร— TotalSpace Fโ‚‚ Eโ‚‚ is an inducing map.

                def Trivialization.Prod.toFun' {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] (eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj) (eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj) :
                (Bundle.TotalSpace (Fโ‚ ร— Fโ‚‚) fun (x : B) => Eโ‚ x ร— Eโ‚‚ x) โ†’ B ร— Fโ‚ ร— Fโ‚‚

                Given trivializations eโ‚, eโ‚‚ for fiber bundles Eโ‚, Eโ‚‚ over a base B, the forward function for the construction Trivialization.prod, the induced trivialization for the fiberwise product of Eโ‚ and Eโ‚‚.

                Equations
                  Instances For
                    theorem Trivialization.Prod.continuous_to_fun {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] {eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj} {eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj} :
                    noncomputable def Trivialization.Prod.invFun' {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] (eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj) (eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj) [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] (p : B ร— Fโ‚ ร— Fโ‚‚) :
                    Bundle.TotalSpace (Fโ‚ ร— Fโ‚‚) fun (x : B) => Eโ‚ x ร— Eโ‚‚ x

                    Given trivializations eโ‚, eโ‚‚ for fiber bundles Eโ‚, Eโ‚‚ over a base B, the inverse function for the construction Trivialization.prod, the induced trivialization for the fiberwise product of Eโ‚ and Eโ‚‚.

                    Equations
                      Instances For
                        theorem Trivialization.Prod.left_inv {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] {eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj} {eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj} [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] {x : Bundle.TotalSpace (Fโ‚ ร— Fโ‚‚) fun (x : B) => Eโ‚ x ร— Eโ‚‚ x} (h : x โˆˆ Bundle.TotalSpace.proj โปยน' (eโ‚.baseSet โˆฉ eโ‚‚.baseSet)) :
                        invFun' eโ‚ eโ‚‚ (toFun' eโ‚ eโ‚‚ x) = x
                        theorem Trivialization.Prod.right_inv {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] {eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj} {eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj} [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] {x : B ร— Fโ‚ ร— Fโ‚‚} (h : x โˆˆ (eโ‚.baseSet โˆฉ eโ‚‚.baseSet) ร—หข Set.univ) :
                        toFun' eโ‚ eโ‚‚ (invFun' eโ‚ eโ‚‚ x) = x
                        theorem Trivialization.Prod.continuous_inv_fun {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] {eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj} {eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj} [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] :
                        ContinuousOn (invFun' eโ‚ eโ‚‚) ((eโ‚.baseSet โˆฉ eโ‚‚.baseSet) ร—หข Set.univ)
                        noncomputable def Trivialization.prod {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] (eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj) (eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj) [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] :

                        Given trivializations eโ‚, eโ‚‚ for bundle types Eโ‚, Eโ‚‚ over a base B, the induced trivialization for the fiberwise product of Eโ‚ and Eโ‚‚, whose base set is eโ‚.baseSet โˆฉ eโ‚‚.baseSet.

                        Equations
                          Instances For
                            @[simp]
                            theorem Trivialization.prod_symm_apply_snd {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] (eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj) (eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj) [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] (p : B ร— Fโ‚ ร— Fโ‚‚) :
                            (โ†‘(eโ‚.prod eโ‚‚).symm p).snd = (eโ‚.symm p.1 p.2.1, eโ‚‚.symm p.1 p.2.2)
                            @[simp]
                            theorem Trivialization.prod_source {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] (eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj) (eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj) [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] :
                            @[simp]
                            theorem Trivialization.prod_target {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] (eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj) (eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj) [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] :
                            (eโ‚.prod eโ‚‚).target = (eโ‚.baseSet โˆฉ eโ‚‚.baseSet) ร—หข Set.univ
                            @[simp]
                            theorem Trivialization.prod_symm_apply_proj {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] (eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj) (eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj) [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] (p : B ร— Fโ‚ ร— Fโ‚‚) :
                            (โ†‘(eโ‚.prod eโ‚‚).symm p).proj = p.1
                            @[simp]
                            theorem Trivialization.prod_baseSet {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] (eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj) (eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj) [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] :
                            (eโ‚.prod eโ‚‚).baseSet = eโ‚.baseSet โˆฉ eโ‚‚.baseSet
                            @[simp]
                            theorem Trivialization.prod_apply {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] (eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj) (eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj) [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] (aโœ : Bundle.TotalSpace (Fโ‚ ร— Fโ‚‚) fun (x : B) => Eโ‚ x ร— Eโ‚‚ x) :
                            โ†‘(eโ‚.prod eโ‚‚) aโœ = Prod.toFun' eโ‚ eโ‚‚ aโœ
                            theorem Trivialization.prod_symm_apply {B : Type u_1} [TopologicalSpace B] {Fโ‚ : Type u_2} [TopologicalSpace Fโ‚] {Eโ‚ : B โ†’ Type u_3} [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] {Fโ‚‚ : Type u_4} [TopologicalSpace Fโ‚‚] {Eโ‚‚ : B โ†’ Type u_5} [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] (eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj) (eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj) [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] (x : B) (wโ‚ : Fโ‚) (wโ‚‚ : Fโ‚‚) :
                            โ†‘(eโ‚.prod eโ‚‚).symm (x, wโ‚, wโ‚‚) = { proj := x, snd := (eโ‚.symm x wโ‚, eโ‚‚.symm x wโ‚‚) }
                            noncomputable instance FiberBundle.prod {B : Type u_1} [TopologicalSpace B] (Fโ‚ : Type u_2) [TopologicalSpace Fโ‚] (Eโ‚ : B โ†’ Type u_3) [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] (Fโ‚‚ : Type u_4) [TopologicalSpace Fโ‚‚] (Eโ‚‚ : B โ†’ Type u_5) [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] [(x : B) โ†’ TopologicalSpace (Eโ‚ x)] [(x : B) โ†’ TopologicalSpace (Eโ‚‚ x)] [FiberBundle Fโ‚ Eโ‚] [FiberBundle Fโ‚‚ Eโ‚‚] :
                            FiberBundle (Fโ‚ ร— Fโ‚‚) fun (x : B) => Eโ‚ x ร— Eโ‚‚ x

                            The product of two fiber bundles is a fiber bundle.

                            Equations
                              @[simp]
                              theorem FiberBundle.prod_trivializationAt' {B : Type u_1} [TopologicalSpace B] (Fโ‚ : Type u_2) [TopologicalSpace Fโ‚] (Eโ‚ : B โ†’ Type u_3) [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] (Fโ‚‚ : Type u_4) [TopologicalSpace Fโ‚‚] (Eโ‚‚ : B โ†’ Type u_5) [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] [(x : B) โ†’ TopologicalSpace (Eโ‚ x)] [(x : B) โ†’ TopologicalSpace (Eโ‚‚ x)] [FiberBundle Fโ‚ Eโ‚] [FiberBundle Fโ‚‚ Eโ‚‚] (b : B) :
                              trivializationAt' b = (trivializationAt Fโ‚ Eโ‚ b).prod (trivializationAt Fโ‚‚ Eโ‚‚ b)
                              @[simp]
                              theorem FiberBundle.prod_trivializationAtlas' {B : Type u_1} [TopologicalSpace B] (Fโ‚ : Type u_2) [TopologicalSpace Fโ‚] (Eโ‚ : B โ†’ Type u_3) [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] (Fโ‚‚ : Type u_4) [TopologicalSpace Fโ‚‚] (Eโ‚‚ : B โ†’ Type u_5) [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] [(x : B) โ†’ TopologicalSpace (Eโ‚ x)] [(x : B) โ†’ TopologicalSpace (Eโ‚‚ x)] [FiberBundle Fโ‚ Eโ‚] [FiberBundle Fโ‚‚ Eโ‚‚] :
                              trivializationAtlas' = {e : Trivialization (Fโ‚ ร— Fโ‚‚) Bundle.TotalSpace.proj | โˆƒ (eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj) (eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj) (_ : MemTrivializationAtlas eโ‚) (_ : MemTrivializationAtlas eโ‚‚), e = eโ‚.prod eโ‚‚}
                              instance instMemTrivializationAtlasProdProd {B : Type u_1} [TopologicalSpace B] (Fโ‚ : Type u_2) [TopologicalSpace Fโ‚] (Eโ‚ : B โ†’ Type u_3) [TopologicalSpace (Bundle.TotalSpace Fโ‚ Eโ‚)] (Fโ‚‚ : Type u_4) [TopologicalSpace Fโ‚‚] (Eโ‚‚ : B โ†’ Type u_5) [TopologicalSpace (Bundle.TotalSpace Fโ‚‚ Eโ‚‚)] [(x : B) โ†’ Zero (Eโ‚ x)] [(x : B) โ†’ Zero (Eโ‚‚ x)] [(x : B) โ†’ TopologicalSpace (Eโ‚ x)] [(x : B) โ†’ TopologicalSpace (Eโ‚‚ x)] [FiberBundle Fโ‚ Eโ‚] [FiberBundle Fโ‚‚ Eโ‚‚] {eโ‚ : Trivialization Fโ‚ Bundle.TotalSpace.proj} {eโ‚‚ : Trivialization Fโ‚‚ Bundle.TotalSpace.proj} [MemTrivializationAtlas eโ‚] [MemTrivializationAtlas eโ‚‚] :
                              MemTrivializationAtlas (eโ‚.prod eโ‚‚)

                              Pullbacks of fiber bundles #

                              instance instTopologicalSpacePullback {B : Type u} (E : B โ†’ Type wโ‚) {B' : Type wโ‚‚} (f : B' โ†’ B) [(x : B) โ†’ TopologicalSpace (E x)] (x : B') :
                              Equations
                                @[irreducible]
                                def pullbackTopology {B : Type u_1} (F : Type u_2) (E : B โ†’ Type u_3) {B' : Type u_4} (f : B' โ†’ B) [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] :

                                Definition of Pullback.TotalSpace.topologicalSpace, which we make irreducible.

                                Equations
                                  Instances For
                                    theorem pullbackTopology_def {B : Type u_1} (F : Type u_2) (E : B โ†’ Type u_3) {B' : Type u_4} (f : B' โ†’ B) [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] :
                                    instance Pullback.TotalSpace.topologicalSpace {B : Type u} (F : Type v) (E : B โ†’ Type wโ‚) {B' : Type wโ‚‚} (f : B' โ†’ B) [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] :

                                    The topology on the total space of a pullback bundle is the coarsest topology for which both the projections to the base and the map to the original bundle are continuous.

                                    Equations
                                      theorem Pullback.continuous_proj {B : Type u} (F : Type v) (E : B โ†’ Type wโ‚) {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] (f : B' โ†’ B) :
                                      theorem Pullback.continuous_lift {B : Type u} (F : Type v) (E : B โ†’ Type wโ‚) {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] (f : B' โ†’ B) :
                                      theorem Pullback.continuous_totalSpaceMk {B : Type u} (F : Type v) (E : B โ†’ Type wโ‚) {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] [TopologicalSpace F] [TopologicalSpace B] [(x : B) โ†’ TopologicalSpace (E x)] [FiberBundle F E] {f : B' โ†’ B} {x : B'} :
                                      noncomputable def Trivialization.pullback {B : Type u} {F : Type v} {E : B โ†’ Type wโ‚} {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] [TopologicalSpace F] [TopologicalSpace B] [(_b : B) โ†’ Zero (E _b)] {K : Type U} [FunLike K B' B] [ContinuousMapClass K B' B] (e : Trivialization F Bundle.TotalSpace.proj) (f : K) :

                                      A fiber bundle trivialization can be pulled back to a trivialization on the pullback bundle.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem Trivialization.pullback_apply {B : Type u} {F : Type v} {E : B โ†’ Type wโ‚} {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] [TopologicalSpace F] [TopologicalSpace B] [(_b : B) โ†’ Zero (E _b)] {K : Type U} [FunLike K B' B] [ContinuousMapClass K B' B] (e : Trivialization F Bundle.TotalSpace.proj) (f : K) (z : Bundle.TotalSpace F (โ‡‘f *แต– E)) :
                                          โ†‘(e.pullback f) z = (z.proj, (โ†‘e (Bundle.Pullback.lift (โ‡‘f) z)).2)
                                          @[simp]
                                          theorem Trivialization.pullback_source {B : Type u} {F : Type v} {E : B โ†’ Type wโ‚} {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] [TopologicalSpace F] [TopologicalSpace B] [(_b : B) โ†’ Zero (E _b)] {K : Type U} [FunLike K B' B] [ContinuousMapClass K B' B] (e : Trivialization F Bundle.TotalSpace.proj) (f : K) :
                                          @[simp]
                                          theorem Trivialization.pullback_symm_apply_snd {B : Type u} {F : Type v} {E : B โ†’ Type wโ‚} {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] [TopologicalSpace F] [TopologicalSpace B] [(_b : B) โ†’ Zero (E _b)] {K : Type U} [FunLike K B' B] [ContinuousMapClass K B' B] (e : Trivialization F Bundle.TotalSpace.proj) (f : K) (y : B' ร— F) :
                                          (โ†‘(e.pullback f).symm y).snd = e.symm (f y.1) y.2
                                          @[simp]
                                          theorem Trivialization.pullback_baseSet {B : Type u} {F : Type v} {E : B โ†’ Type wโ‚} {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] [TopologicalSpace F] [TopologicalSpace B] [(_b : B) โ†’ Zero (E _b)] {K : Type U} [FunLike K B' B] [ContinuousMapClass K B' B] (e : Trivialization F Bundle.TotalSpace.proj) (f : K) :
                                          @[simp]
                                          theorem Trivialization.pullback_symm_apply_proj {B : Type u} {F : Type v} {E : B โ†’ Type wโ‚} {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] [TopologicalSpace F] [TopologicalSpace B] [(_b : B) โ†’ Zero (E _b)] {K : Type U} [FunLike K B' B] [ContinuousMapClass K B' B] (e : Trivialization F Bundle.TotalSpace.proj) (f : K) (y : B' ร— F) :
                                          (โ†‘(e.pullback f).symm y).proj = y.1
                                          @[simp]
                                          theorem Trivialization.pullback_target {B : Type u} {F : Type v} {E : B โ†’ Type wโ‚} {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] [TopologicalSpace F] [TopologicalSpace B] [(_b : B) โ†’ Zero (E _b)] {K : Type U} [FunLike K B' B] [ContinuousMapClass K B' B] (e : Trivialization F Bundle.TotalSpace.proj) (f : K) :
                                          noncomputable instance FiberBundle.pullback {B : Type u} {F : Type v} {E : B โ†’ Type wโ‚} {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] [TopologicalSpace F] [TopologicalSpace B] [(_b : B) โ†’ Zero (E _b)] {K : Type U} [FunLike K B' B] [ContinuousMapClass K B' B] [(x : B) โ†’ TopologicalSpace (E x)] [FiberBundle F E] (f : K) :
                                          FiberBundle F (โ‡‘f *แต– E)
                                          Equations
                                            @[simp]
                                            theorem FiberBundle.pullback_trivializationAtlas' {B : Type u} {F : Type v} {E : B โ†’ Type wโ‚} {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] [TopologicalSpace F] [TopologicalSpace B] [(_b : B) โ†’ Zero (E _b)] {K : Type U} [FunLike K B' B] [ContinuousMapClass K B' B] [(x : B) โ†’ TopologicalSpace (E x)] [FiberBundle F E] (f : K) :
                                            @[simp]
                                            theorem FiberBundle.pullback_trivializationAt' {B : Type u} {F : Type v} {E : B โ†’ Type wโ‚} {B' : Type wโ‚‚} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] [TopologicalSpace F] [TopologicalSpace B] [(_b : B) โ†’ Zero (E _b)] {K : Type U} [FunLike K B' B] [ContinuousMapClass K B' B] [(x : B) โ†’ TopologicalSpace (E x)] [FiberBundle F E] (f : K) (x : B') :