Documentation

Mathlib.Topology.Instances.ENat

Topology on extended natural numbers #

Topology on โ„•โˆž.

Note: this is different from the EMetricSpace topology. The EMetricSpace topology has IsOpen {โˆž}, but all neighborhoods of โˆž in โ„•โˆž contain infinite intervals.

Equations
    theorem ENat.nhds_natCast (n : โ„•) :
    nhds โ†‘n = pure โ†‘n
    theorem ENat.tendsto_nhds_top_iff_natCast_lt {ฮฑ : Type u_1} {l : Filter ฮฑ} {f : ฮฑ โ†’ โ„•โˆž} :
    Filter.Tendsto f l (nhds โŠค) โ†” โˆ€ (n : โ„•), โˆ€แถ  (a : ฮฑ) in l, โ†‘n < f a
    theorem Filter.Tendsto.enatSub {ฮฑ : Type u_1} {l : Filter ฮฑ} {f g : ฮฑ โ†’ โ„•โˆž} {a b : โ„•โˆž} (hf : Tendsto f l (nhds a)) (hg : Tendsto g l (nhds b)) (h : a โ‰  โŠค โˆจ b โ‰  โŠค) :
    Tendsto (fun (x : ฮฑ) => f x - g x) l (nhds (a - b))
    theorem ContinuousWithinAt.enatSub {X : Type u_1} [TopologicalSpace X] {f g : X โ†’ โ„•โˆž} {s : Set X} {x : X} (hf : ContinuousWithinAt f s x) (hg : ContinuousWithinAt g s x) (h : f x โ‰  โŠค โˆจ g x โ‰  โŠค) :
    ContinuousWithinAt (fun (x : X) => f x - g x) s x
    theorem ContinuousAt.enatSub {X : Type u_1} [TopologicalSpace X] {f g : X โ†’ โ„•โˆž} {x : X} (hf : ContinuousAt f x) (hg : ContinuousAt g x) (h : f x โ‰  โŠค โˆจ g x โ‰  โŠค) :
    ContinuousAt (fun (x : X) => f x - g x) x
    theorem ContinuousOn.enatSub {X : Type u_1} [TopologicalSpace X] {f g : X โ†’ โ„•โˆž} {s : Set X} (hf : ContinuousOn f s) (hg : ContinuousOn g s) (h : โˆ€ x โˆˆ s, f x โ‰  โŠค โˆจ g x โ‰  โŠค) :
    ContinuousOn (fun (x : X) => f x - g x) s
    theorem Continuous.enatSub {X : Type u_1} [TopologicalSpace X] {f g : X โ†’ โ„•โˆž} (hf : Continuous f) (hg : Continuous g) (h : โˆ€ (x : X), f x โ‰  โŠค โˆจ g x โ‰  โŠค) :
    Continuous fun (x : X) => f x - g x