Jacobson spaces #
Main results #
JacobsonSpace: The class of Jacobson spaces, i.e. spaces such that the set of closed points are dense in every closed subspace.jacobsonSpace_iff_locallyClosed:Xis a Jacobson space iff every locally closed subset contains a closed point ofX.JacobsonSpace.discreteTopology: IfXonly has finitely many closed points, then the topology onXis discrete.
References #
The set of closed points.
Equations
Instances For
@[simp]
theorem
preimage_closedPoints_subset
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
{f : X โ Y}
(hf : Function.Injective f)
(hf' : Continuous f)
:
theorem
Topology.IsClosedEmbedding.preimage_closedPoints
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
{f : X โ Y}
(hf : IsClosedEmbedding f)
:
theorem
Set.Finite.isDiscrete_of_subset_closedPoints
{X : Type u_1}
[TopologicalSpace X]
{s : Set X}
(hs : s.Finite)
(hs' : s โ closedPoints X)
:
The class of Jacobson spaces, i.e. spaces such that the set of closed points are dense in every closed subspace.
Instances
theorem
jacobsonSpace_iff_locallyClosed
{X : Type u_1}
[TopologicalSpace X]
:
JacobsonSpace X โ โ (Z : Set X), Z.Nonempty โ IsLocallyClosed Z โ (Z โฉ closedPoints X).Nonempty
theorem
nonempty_inter_closedPoints
{X : Type u_1}
[TopologicalSpace X]
[JacobsonSpace X]
{Z : Set X}
(hZ : Z.Nonempty)
(hZ' : IsLocallyClosed Z)
:
(Z โฉ closedPoints X).Nonempty
theorem
JacobsonSpace.closure_inter_closedPoints_eq_closure
{X : Type u_1}
[TopologicalSpace X]
[JacobsonSpace X]
{S : Set X}
(hS : IsLocallyClosed S)
:
theorem
isClosed_singleton_of_isLocallyClosed_singleton
{X : Type u_1}
[TopologicalSpace X]
[JacobsonSpace X]
{x : X}
(hx : IsLocallyClosed {x})
:
theorem
Topology.IsOpenEmbedding.preimage_closedPoints
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
{f : X โ Y}
(hf : IsOpenEmbedding f)
[JacobsonSpace Y]
:
theorem
JacobsonSpace.of_isOpenEmbedding
{X : Type u_2}
{Y : Type u_1}
[TopologicalSpace X]
[TopologicalSpace Y]
{f : X โ Y}
[JacobsonSpace Y]
(hf : Topology.IsOpenEmbedding f)
:
theorem
JacobsonSpace.of_isClosedEmbedding
{X : Type u_2}
{Y : Type u_1}
[TopologicalSpace X]
[TopologicalSpace Y]
{f : X โ Y}
[JacobsonSpace Y]
(hf : Topology.IsClosedEmbedding f)
:
theorem
JacobsonSpace.discreteTopology
{X : Type u_1}
[TopologicalSpace X]
[JacobsonSpace X]
(h : (closedPoints X).Finite)
:
@[instance 100]
instance
instDiscreteTopologyOfFiniteOfJacobsonSpace
{X : Type u_1}
[TopologicalSpace X]
[Finite X]
[JacobsonSpace X]
:
@[instance 100]
theorem
TopologicalSpace.IsOpenCover.jacobsonSpace_iff
{X : Type u_2}
[TopologicalSpace X]
{ฮน : Type u_1}
{U : ฮน โ Opens X}
(hU : IsOpenCover U)
:
theorem
subsingleton_image_closure_of_finite_of_isPreirreducible
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
{f : X โ Y}
[JacobsonSpace X]
{S : Set X}
(hS : IsLocallyClosed S)
(hS' : IsPreirreducible S)
(hfโ : Continuous f)
(hfโ : IsClosedMap f)
(hfS : (f '' S).Finite)
:
(f '' closure S).Subsingleton