Sequential compacts in metric spaces #
In this file we prove 2 versions of Bolzano-Weierstrass theorem for proper metric spaces.
theorem
tendsto_subseq_of_frequently_bounded
{X : Type u_1}
[PseudoMetricSpace X]
[ProperSpace X]
{s : Set X}
(hs : Bornology.IsBounded s)
{x : โ โ X}
(hx : โแถ (n : โ) in Filter.atTop, x n โ s)
:
โ a โ closure s, โ (ฯ : โ โ โ), StrictMono ฯ โง Filter.Tendsto (x โ ฯ) Filter.atTop (nhds a)
A version of Bolzano-Weierstrass: in a proper metric space (e.g. $โ^n$), every bounded sequence has a converging subsequence. This version assumes only that the sequence is frequently in some bounded set.
theorem
tendsto_subseq_of_bounded
{X : Type u_1}
[PseudoMetricSpace X]
[ProperSpace X]
{s : Set X}
(hs : Bornology.IsBounded s)
{x : โ โ X}
(hx : โ (n : โ), x n โ s)
:
โ a โ closure s, โ (ฯ : โ โ โ), StrictMono ฯ โง Filter.Tendsto (x โ ฯ) Filter.atTop (nhds a)
A version of Bolzano-Weierstrass: in a proper metric space (e.g. $โ^n$), every bounded sequence has a converging subsequence.