Documentation

Mathlib.Topology.MetricSpace.Sequences

Sequential compacts in metric spaces #

In this file we prove 2 versions of Bolzano-Weierstrass theorem for proper metric spaces.

theorem tendsto_subseq_of_frequently_bounded {X : Type u_1} [PseudoMetricSpace X] [ProperSpace X] {s : Set X} (hs : Bornology.IsBounded s) {x : โ„• โ†’ X} (hx : โˆƒแถ  (n : โ„•) in Filter.atTop, x n โˆˆ s) :
โˆƒ a โˆˆ closure s, โˆƒ (ฯ† : โ„• โ†’ โ„•), StrictMono ฯ† โˆง Filter.Tendsto (x โˆ˜ ฯ†) Filter.atTop (nhds a)

A version of Bolzano-Weierstrass: in a proper metric space (e.g. $โ„^n$), every bounded sequence has a converging subsequence. This version assumes only that the sequence is frequently in some bounded set.

theorem tendsto_subseq_of_bounded {X : Type u_1} [PseudoMetricSpace X] [ProperSpace X] {s : Set X} (hs : Bornology.IsBounded s) {x : โ„• โ†’ X} (hx : โˆ€ (n : โ„•), x n โˆˆ s) :
โˆƒ a โˆˆ closure s, โˆƒ (ฯ† : โ„• โ†’ โ„•), StrictMono ฯ† โˆง Filter.Tendsto (x โˆ˜ ฯ†) Filter.atTop (nhds a)

A version of Bolzano-Weierstrass: in a proper metric space (e.g. $โ„^n$), every bounded sequence has a converging subsequence.