Urysohn's lemma for bounded continuous functions #
In this file we reformulate Urysohn's lemma exists_continuous_zero_one_of_isClosed in terms of
bounded continuous functions X โแต โ. These lemmas live in a separate file because
Topology.ContinuousMap.Bounded imports too many other files.
Tags #
Urysohn's lemma, normal topological space
theorem
exists_bounded_zero_one_of_closed
{X : Type u_1}
[TopologicalSpace X]
[NormalSpace X]
{s t : Set X}
(hs : IsClosed s)
(ht : IsClosed t)
(hd : Disjoint s t)
:
Urysohn's lemma: if s and t are two disjoint closed sets in a normal topological
space X, then there exists a continuous function f : X โ โ such that
fequals zero ons;fequals one ont;0 โค f x โค 1for allx.
theorem
exists_bounded_mem_Icc_of_closed_of_le
{X : Type u_1}
[TopologicalSpace X]
[NormalSpace X]
{s t : Set X}
(hs : IsClosed s)
(ht : IsClosed t)
(hd : Disjoint s t)
{a b : โ}
(hle : a โค b)
:
โ (f : BoundedContinuousFunction X โ),
Set.EqOn (โf) (Function.const X a) s โง Set.EqOn (โf) (Function.const X b) t โง โ (x : X), f x โ Set.Icc a b
Urysohn's lemma: if s and t are two disjoint closed sets in a normal topological space X,
and a โค b are two real numbers, then there exists a continuous function f : X โ โ such that
fequalsaons;fequalsbont;a โค f x โค bfor allx.