Documentation

Mathlib.Topology.UrysohnsBounded

Urysohn's lemma for bounded continuous functions #

In this file we reformulate Urysohn's lemma exists_continuous_zero_one_of_isClosed in terms of bounded continuous functions X โ†’แต‡ โ„. These lemmas live in a separate file because Topology.ContinuousMap.Bounded imports too many other files.

Tags #

Urysohn's lemma, normal topological space

theorem exists_bounded_zero_one_of_closed {X : Type u_1} [TopologicalSpace X] [NormalSpace X] {s t : Set X} (hs : IsClosed s) (ht : IsClosed t) (hd : Disjoint s t) :
โˆƒ (f : BoundedContinuousFunction X โ„), Set.EqOn (โ‡‘f) 0 s โˆง Set.EqOn (โ‡‘f) 1 t โˆง โˆ€ (x : X), f x โˆˆ Set.Icc 0 1

Urysohn's lemma: if s and t are two disjoint closed sets in a normal topological space X, then there exists a continuous function f : X โ†’ โ„ such that

  • f equals zero on s;
  • f equals one on t;
  • 0 โ‰ค f x โ‰ค 1 for all x.
theorem exists_bounded_mem_Icc_of_closed_of_le {X : Type u_1} [TopologicalSpace X] [NormalSpace X] {s t : Set X} (hs : IsClosed s) (ht : IsClosed t) (hd : Disjoint s t) {a b : โ„} (hle : a โ‰ค b) :
โˆƒ (f : BoundedContinuousFunction X โ„), Set.EqOn (โ‡‘f) (Function.const X a) s โˆง Set.EqOn (โ‡‘f) (Function.const X b) t โˆง โˆ€ (x : X), f x โˆˆ Set.Icc a b

Urysohn's lemma: if s and t are two disjoint closed sets in a normal topological space X, and a โ‰ค b are two real numbers, then there exists a continuous function f : X โ†’ โ„ such that

  • f equals a on s;
  • f equals b on t;
  • a โ‰ค f x โ‰ค b for all x.