Documentation Verification Report

field

πŸ“ Source: MathlibTest/grind/field.lean

Statistics

MetricCount
Definitionsfield, field, field, field, field, field, field, field, field, field, field, field, field
13
Theorems0
Total13

AlgebraicGeometry.ValuativeCommSq

Definitions

NameCategoryTheorems
field πŸ“–CompOp
2 mathmath: isFractionRing, commSq

CauSeq.Completion.Cauchy

Definitions

NameCategoryTheorems
field πŸ“–CompOpβ€”

Equiv

Definitions

NameCategoryTheorems
field πŸ“–CompOpβ€”

Field.DirectLimit

Definitions

NameCategoryTheorems
field πŸ“–CompOpβ€”

FirstOrder.Language.Theory

Definitions

NameCategoryTheorems
field πŸ“–CompOp
2 mathmath: FirstOrder.Field.modelField_of_modelACF, FirstOrder.Field.instModelField

FractionRing

Definitions

NameCategoryTheorems
field πŸ“–CompOp
44 mathmath: ClassGroup.mk0_integralRep, ClassGroup.mk_eq_mk_of_coe_ideal, ClassGroup.Quot_mk_eq_mk, instIsSeparableFractionRingLocalizationAlgebraMapSubmonoidPrimeCompl, algebraMap_liftAlgebra, instIsPushoutFractionRingPolynomial_1, coeSubmodule_differentIdeal_fractionRing, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Algebra.algebraMap_intNorm_fractionRing, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_neg_mul, AlgebraicIndependent.lift_reprField, Ring.instIsFractionRingNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, instIsScalarTowerAtPrimeFractionRing, map_equiv_traceDual, Ideal.relNorm_algebraMap', Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, Ideal.relNorm_algebraMap, IsGaloisGroup.toFractionRing, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_mul_mk_XYIdeal', AlgebraicIndependent.liftAlgHom_comp_reprField, ClassGroup.mk_eq_mk, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, WeierstrassCurve.Affine.Point.toClass_some, Ring.instFiniteDimensionalFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, instIsSeparableFractionRingAtPrimeLocalizationAlgebraMapSubmonoidPrimeCompl, AlgebraicIndependent.aevalEquivField_apply_coe, Algebra.IsAlgebraic.rank_fractionRing, instIsPushoutFractionRingPolynomial, Ring.instFaithfulSMulSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, ClassGroup.mk_eq_one_of_coe_ideal, Algebra.IsAlgebraic.rank_fractionRing_mvPolynomial, Algebra.algebraMap_intTrace_fractionRing, Ideal.absNorm_algebraMap, Ring.instIsIntegralClosureNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, Ring.instIsGaloisFractionRingNormalClosure, instFiniteDimensionalFractionRingOfFinite, Algebra.IsAlgebraic.rank_fractionRing_polynomial, ClassGroup.mk_def, WeierstrassCurve.Affine.Point.toClass_apply, instIsPushoutFractionRingMvPolynomial_1, instIsPushoutFractionRingMvPolynomial

Function.Injective

Definitions

NameCategoryTheorems
field πŸ“–CompOpβ€”

Ideal.Quotient

Definitions

NameCategoryTheorems
field πŸ“–CompOp
7 mathmath: IsLocalization.AtPrime.equivQuotientMapOfIsMaximal_symm_apply_mk, normal, KummerDedekind.emultiplicity_factors_map_eq_emultiplicity, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, Ideal.Factors.finiteDimensional_quotient_pow, IsLocalization.AtPrime.equivQuotMaximalIdeal_symm_apply_mk, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply

IsLocalRing.ResidueField

Definitions

NameCategoryTheorems
field πŸ“–CompOp
118 mathmath: Algebra.IsUnramifiedAt.exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective, Algebra.instIsSeparableResidueFieldOfFormallyUnramified, ValuationSubring.coe_mem_principalUnitGroup_iff, algebraMap_residue, PrimeSpectrum.preimageEquivFiber_symm_apply_coe, IsLocalRing.finrank_CotangentSpace_eq_one_iff, PrimeSpectrum.residueField_specComap, IsLocalRing.ker_residue, Ideal.exists_mem_span_singleton_map_residueField_eq, Ideal.ker_algebraMap_residueField, Polynomial.fiberEquivQuotient_tmul, Module.rankAtStalk_eq, instLiesOverFiberOfIsPrime, IsLocalRing.finrank_cotangentSpace_eq_zero, PowerSeries.degree_weierstrassMod_lt, instIsAlgebraicResidueFieldOfIsIntegral, Ideal.algebraMap_quotient_residueField_mk, map_comp, instIsLocalRingTensorProductResidueFieldOfIsLocalHomRingHomAlgebraMap, Algebra.instFiniteResidueFieldOfQuasiFiniteAt, Algebra.WeaklyQuasiFiniteAt.finite_residueField, IsLocalRing.residue_eq_zero_iff, Algebra.FormallyUnramified.iff_map_maximalIdeal_eq, PrimeSpectrum.coe_preimageHomeomorphFiber_apply_asIdeal, PowerSeries.IsWeierstrassFactorization.isWeierstrassDivision, PrimeSpectrum.coe_preimageOrderIsoFiber_symm_apply_coe_asIdeal, IsLocalRing.instIsLocalHomResidueFieldRingHomResidue, Algebra.FormallySmooth.iff_injective_lTensor_residueField, Ideal.Fiber.lift_residueField_surjective, Ideal.algebraMap_residueField_surjective, IsLocalRing.finrank_CotangentSpace_eq_one, IsLocalRing.finrank_cotangentSpace_eq_zero_iff, Algebra.instFiniteResidueFieldOfFormallyUnramified, IsLocalRing.map_tensorProduct_mk_eq_top, IsLocalRing.residue_def, Ideal.ResidueField.ringHom_ext_iff, map_comp_residue, instIsSeparableResidueFieldOfQuotientIdeal, Ideal.surjectiveOnStalks_residueField, PrimeSpectrum.preimageEquivFiber_apply_asIdeal, PrimeSpectrum.mem_image_comap_basicOpen, instIsScalarTower_1, Ideal.ResidueField.liftₐ_comp_toAlgHom, lift_comp_residue, PowerSeries.IsWeierstrassFactorization.natDegree_eq_toNat_order_map, instIsAlgebraicQuotientIdealResidueField, IsLocalRing.instFiniteDimensionalResidueFieldCotangentSpaceOfIsNoetherianRing, Algebra.QuasiFinite.finite_fiber, Algebra.QuasiFinite.instFiniteResidueField, mapEquiv_apply, Ideal.ResidueField.map_algebraMap, algebraMap_mk, Ideal.ResidueField.exists_smul_eq_tmul_one, Algebra.isUnramifiedAt_iff_map_eq, PrimeSpectrum.residueField_comap, Algebra.instFiniteResidueFieldOfIsUnramifiedAt, map_map, map_residue, IsLocalRing.PrimeSpectrum.comap_residue, tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain, map_id, PadicInt.toZMod_eq_residueField_comp_residue, RingHom.SurjectiveOnStalks.residueFieldMap_bijective, map_id_apply, Algebra.IsUnramifiedAt.not_minpoly_sq_dvd, Algebra.instIsSeparableResidueFieldOfIsUnramifiedAt, instLiesOverResidueFieldBotIdeal, IsLocalRing.split_injective_iff_lTensor_residueField_injective, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq, algebraMap_eq, IsLocalRing.finrank_cotangentSpace_le_one_iff, PrimeSpectrum.coe_primesOverOrderIsoFiber_apply_asIdeal, IsLocalRing.instIsScalarTowerResidueFieldCotangentSpace, Ideal.ResidueField.algHom_ext_iff, ValuationSubring.surjective_unitGroupToResidueFieldUnits, Ideal.ResidueField.lift_algebraMap, ValuationSubring.principalUnitGroupEquiv_apply, isNilpotent_tensor_residueField_iff, PrimeSpectrum.coe_preimageOrderIsoFiber_apply_asIdeal, Module.mem_support_iff_nontrivial_residueField_tensorProduct, finite_of_module_finite, ValuationSubring.unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk_apply, instFiniteResidueField, IsLocalRing.isLocalHom_residue, IsDiscreteValuationRing.TFAE, Ideal.injective_algebraMap_quotient_residueField, instIsScalarTower, instIsScalarTowerQuotientIdealResidueField, PowerSeries.IsWeierstrassFactorization.degree_eq_coe_lift_order_map, Algebra.IsUnramifiedAt.exists_notMem_forall_ne_mem_and_adjoin_eq_top, IsLocalRing.CotangentSpace.span_image_eq_top_iff, PrimeSpectrum.coe_preimageHomeomorphFiber_symm_apply_coe_asIdeal, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, residue_smul, PrimeSpectrum.coe_primesOverOrderIsoFiber_symm_apply_coe, IsLocalRing.subsingleton_tensorProduct, IsLocalRing.instFiniteResidueField, ValuationSubring.ker_unitGroupToResidueFieldUnits, PrimeSpectrum.mem_image_comap_zeroLocus_sdiff, Polynomial.residueFieldMapCAlgEquiv_symm_X, Algebra.isSeparable_residueField_iff, Ideal.algebraMap_residueField_eq_zero, Ideal.bijective_algebraMap_quotient_residueField, Ideal.ResidueField.liftₐ_algebraMap, Algebra.QuasiFinite.instIsArtinianRingFiber, IsLocalRing.instIsScalarTowerResidueField, lift_residue_apply, Polynomial.residueFieldMapCAlgEquiv_algebraMap, ValuationSubring.unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk, ValuationSubring.coe_unitGroupToResidueFieldUnits_apply, Ideal.Fiber.exists_smul_eq_one_tmul, Valuation.HasExtension.algebraMap_residue_eq_residue_algebraMap, Ideal.ResidueField.mapₐ_apply, PrimeSpectrum.nontrivial_iff_mem_rangeComap, IsLocalRing.residue_surjective, Polynomial.residueFieldMapCAlgEquiv_symm_C, ValuationSubring.principalUnitGroup_symm_apply, instIsFractionRingQuotientIdealResidueField

Mathlib.Tactic.FieldSimp

Definitions

NameCategoryTheorems
field πŸ“–CompOpβ€”

Padic

Definitions

NameCategoryTheorems
field πŸ“–CompOp
41 mathmath: coe_neg, complete', PadicComplex.coe_eq, coe_div, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, coe_sub, padicNormE.nonarchimedean', PadicComplex.norm_def, padicNormE.image', coe_zero, padicNormE.eq_padic_norm', PadicInt.algebraMap_apply, PadicAlgCl.norm_extends, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, padicNormE.defn, padicNormE.add_eq_max_of_ne', norm_p_pow, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, coe_mul, PadicAlgCl.instUniformContinuousConstSMulPadic, PadicInt.Coe.ringHom_apply, padicNormE.is_norm, PadicAlgCl.spectralNorm_eq, PadicInt.coe_adicCompletionIntegersEquiv_apply, coe_inj, PadicInt.isFractionRing, coe_one, PadicAlgCl.isAlgebraic, complete'', PadicComplex.instIsScalarTowerPadicPadicAlgCl, isAbsoluteValue, exi_rat_seq_conv, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, valuation_pow, rat_dense', coe_add, PadicAlgCl.coe_eq, PadicInt.coe_dpow_eq, PadicComplexInt.integers, PadicInt.coe_pow, valuation_inv

Polynomial.SplittingFieldAux

Definitions

NameCategoryTheorems
field πŸ“–CompOp
5 mathmath: algebraMap_succ, adjoin_rootSet, scalar_tower', instIsSplittingFieldNatDegree, splits

ULift

Definitions

NameCategoryTheorems
field πŸ“–CompOpβ€”

---

← Back to Index