Lemmas about division (semi)rings and (semi)fields #
@[deprecated add_div (since := "2025-08-25")]
See inv_add_inv for the more convenient version when K is commutative.
theorem
add_div_eq_mul_add_div
{K : Type u_1}
[DivisionSemiring K]
{c : K}
(a b : K)
(hc : c β 0)
:
@[simp]
@[simp]
@[simp]
@[simp]
See inv_sub_inv for the more convenient version when K is commutative.
@[instance 100]
@[instance 100]
Equations
@[reducible, inline]
noncomputable abbrev
DivisionRing.ofIsUnitOrEqZero
{R : Type u_3}
[Nontrivial R]
[Ring R]
(h : β (a : R), IsUnit a β¨ a = 0)
:
Constructs a DivisionRing structure on a Ring consisting only of units and 0.
Equations
Instances For
@[reducible, inline]
noncomputable abbrev
Field.ofIsUnitOrEqZero
{R : Type u_3}
[Nontrivial R]
[CommRing R]
(h : β (a : R), IsUnit a β¨ a = 0)
:
Field R
Constructs a Field structure on a CommRing consisting only of units and 0.
Equations
Instances For
@[reducible, inline]
abbrev
Function.Injective.divisionSemiring
{K : Type u_1}
{L : Type u_2}
[Zero K]
[Add K]
[One K]
[Mul K]
[Inv K]
[Div K]
[SMul β K]
[SMul ββ₯0 K]
[Pow K β]
[Pow K β€]
[NatCast K]
[NNRatCast K]
(f : K β L)
(hf : Injective f)
[DivisionSemiring L]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : β (x y : K), f (x + y) = f x + f y)
(mul : β (x y : K), f (x * y) = f x * f y)
(inv : β (x : K), f xβ»ΒΉ = (f x)β»ΒΉ)
(div : β (x y : K), f (x / y) = f x / f y)
(nsmul : β (n : β) (x : K), f (n β’ x) = n β’ f x)
(nnqsmul : β (q : ββ₯0) (x : K), f (q β’ x) = q β’ f x)
(npow : β (x : K) (n : β), f (x ^ n) = f x ^ n)
(zpow : β (x : K) (n : β€), f (x ^ n) = f x ^ n)
(natCast : β (n : β), f βn = βn)
(nnratCast : β (q : ββ₯0), f βq = βq)
:
Pullback a DivisionSemiring along an injective function.
Equations
Instances For
@[reducible, inline]
abbrev
Function.Injective.divisionRing
{K : Type u_1}
{L : Type u_2}
[Zero K]
[Add K]
[Neg K]
[Sub K]
[One K]
[Mul K]
[Inv K]
[Div K]
[SMul β K]
[SMul β€ K]
[SMul ββ₯0 K]
[SMul β K]
[Pow K β]
[Pow K β€]
[NatCast K]
[IntCast K]
[NNRatCast K]
[RatCast K]
(f : K β L)
(hf : Injective f)
[DivisionRing L]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : β (x y : K), f (x + y) = f x + f y)
(mul : β (x y : K), f (x * y) = f x * f y)
(neg : β (x : K), f (-x) = -f x)
(sub : β (x y : K), f (x - y) = f x - f y)
(inv : β (x : K), f xβ»ΒΉ = (f x)β»ΒΉ)
(div : β (x y : K), f (x / y) = f x / f y)
(nsmul : β (n : β) (x : K), f (n β’ x) = n β’ f x)
(zsmul : β (n : β€) (x : K), f (n β’ x) = n β’ f x)
(nnqsmul : β (q : ββ₯0) (x : K), f (q β’ x) = q β’ f x)
(qsmul : β (q : β) (x : K), f (q β’ x) = q β’ f x)
(npow : β (x : K) (n : β), f (x ^ n) = f x ^ n)
(zpow : β (x : K) (n : β€), f (x ^ n) = f x ^ n)
(natCast : β (n : β), f βn = βn)
(intCast : β (n : β€), f βn = βn)
(nnratCast : β (q : ββ₯0), f βq = βq)
(ratCast : β (q : β), f βq = βq)
:
Pullback a DivisionSemiring along an injective function.
Equations
Instances For
@[reducible, inline]
abbrev
Function.Injective.semifield
{K : Type u_1}
{L : Type u_2}
[Zero K]
[Add K]
[One K]
[Mul K]
[Inv K]
[Div K]
[SMul β K]
[SMul ββ₯0 K]
[Pow K β]
[Pow K β€]
[NatCast K]
[NNRatCast K]
(f : K β L)
(hf : Injective f)
[Semifield L]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : β (x y : K), f (x + y) = f x + f y)
(mul : β (x y : K), f (x * y) = f x * f y)
(inv : β (x : K), f xβ»ΒΉ = (f x)β»ΒΉ)
(div : β (x y : K), f (x / y) = f x / f y)
(nsmul : β (n : β) (x : K), f (n β’ x) = n β’ f x)
(nnqsmul : β (q : ββ₯0) (x : K), f (q β’ x) = q β’ f x)
(npow : β (x : K) (n : β), f (x ^ n) = f x ^ n)
(zpow : β (x : K) (n : β€), f (x ^ n) = f x ^ n)
(natCast : β (n : β), f βn = βn)
(nnratCast : β (q : ββ₯0), f βq = βq)
:
Pullback a Field along an injective function.
Equations
Instances For
@[reducible, inline]
abbrev
Function.Injective.field
{K : Type u_1}
{L : Type u_2}
[Zero K]
[Add K]
[Neg K]
[Sub K]
[One K]
[Mul K]
[Inv K]
[Div K]
[SMul β K]
[SMul β€ K]
[SMul ββ₯0 K]
[SMul β K]
[Pow K β]
[Pow K β€]
[NatCast K]
[IntCast K]
[NNRatCast K]
[RatCast K]
(f : K β L)
(hf : Injective f)
[Field L]
(zero : f 0 = 0)
(one : f 1 = 1)
(add : β (x y : K), f (x + y) = f x + f y)
(mul : β (x y : K), f (x * y) = f x * f y)
(neg : β (x : K), f (-x) = -f x)
(sub : β (x y : K), f (x - y) = f x - f y)
(inv : β (x : K), f xβ»ΒΉ = (f x)β»ΒΉ)
(div : β (x y : K), f (x / y) = f x / f y)
(nsmul : β (n : β) (x : K), f (n β’ x) = n β’ f x)
(zsmul : β (n : β€) (x : K), f (n β’ x) = n β’ f x)
(nnqsmul : β (q : ββ₯0) (x : K), f (q β’ x) = q β’ f x)
(qsmul : β (q : β) (x : K), f (q β’ x) = q β’ f x)
(npow : β (x : K) (n : β), f (x ^ n) = f x ^ n)
(zpow : β (x : K) (n : β€), f (x ^ n) = f x ^ n)
(natCast : β (n : β), f βn = βn)
(intCast : β (n : β€), f βn = βn)
(nnratCast : β (q : ββ₯0), f βq = βq)
(ratCast : β (q : β), f βq = βq)
:
Field K
Pullback a Field along an injective function.
Equations
Instances For
Order dual #
Equations
Equations
Equations
Equations
@[simp]
@[simp]
Lexicographic order #
Equations
Equations
Equations
@[simp]
@[simp]