Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Field/Basic.lean

Statistics

MetricCount
DefinitionsofIsUnitOrEqZero, ofIsUnitOrEqZero, toGrindField, divisionRing, divisionSemiring, semifield, instDivisionRing, instDivisionSemiring, instField, instRatCast, instSemifield, instDivisionRing, instDivisionSemiring, instField, instRatCast, instSemifield
16
Theoremsdiv_add_div, div_sub_div, inv_add_inv, inv_sub_inv, one_div_add_one_div, isDomain, isDomain, add_div, add_div', add_div_eq_mul_add_div, add_halves, add_self_div_two, div_add', div_add_div, div_add_div_same, div_add_one, div_add_same, div_neg_self, div_sub', div_sub_div, div_sub_div_same, div_sub_one, div_sub_same, half_sub, inv_add_inv, inv_add_inv', inv_eq_selfβ‚€, inv_sub_inv, inv_sub_inv', neg_div_self, ofDual_ratCast, ofLex_ratCast, one_add_div, one_div_add_one_div, one_div_mul_add_mul_one_div_eq_one_div_add_one_div, one_div_mul_sub_mul_one_div_eq_one_div_add_one_div, one_sub_div, same_add_div, same_sub_div, self_eq_invβ‚€, sub_div, sub_div', sub_half, toDual_ratCast, toLex_ratCast
45
Total61

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
div_add_div πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Distrib.toAdd
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”add_div
mul_div_mul_right
eq
div_sub_div πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
β€”neg_div
mul_neg
div_add_div
neg_right
inv_add_inv πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Distrib.toAdd
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
β€”inv_eq_one_div
one_div_add_one_div
inv_sub_inv πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
β€”inv_eq_one_div
div_sub_div
one_right
one_mul
mul_one
one_div_add_one_div πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Distrib.toAdd
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”div_add_div
one_right
one_mul
mul_one
add_comm

DivisionRing

Definitions

NameCategoryTheorems
ofIsUnitOrEqZero πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isDomain πŸ“–mathematicalβ€”IsDomain
DivisionSemiring.toSemiring
toDivisionSemiring
β€”NoZeroDivisors.to_isDomain
toNontrivial
GroupWithZero.noZeroDivisors

Field

Definitions

NameCategoryTheorems
ofIsUnitOrEqZero πŸ“–CompOpβ€”
toGrindField πŸ“–CompOp
1 mathmath: instLawfulOfScientificOfCharZero

Theorems

NameKindAssumesProvesValidatesDepends On
isDomain πŸ“–mathematicalβ€”IsDomain
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
β€”DivisionRing.isDomain

Function.Injective

Definitions

NameCategoryTheorems
divisionRing πŸ“–CompOp
1 mathmath: NumberField.linearDisjoint_of_isGalois_isCoprime_discr
divisionSemiring πŸ“–CompOpβ€”
semifield πŸ“–CompOpβ€”

Lex

Definitions

NameCategoryTheorems
instDivisionRing πŸ“–CompOpβ€”
instDivisionSemiring πŸ“–CompOpβ€”
instField πŸ“–CompOpβ€”
instRatCast πŸ“–CompOp
2 mathmath: ofLex_ratCast, toLex_ratCast
instSemifield πŸ“–CompOpβ€”

OrderDual

Definitions

NameCategoryTheorems
instDivisionRing πŸ“–CompOpβ€”
instDivisionSemiring πŸ“–CompOpβ€”
instField πŸ“–CompOpβ€”
instRatCast πŸ“–CompOp
2 mathmath: ofDual_ratCast, toDual_ratCast
instSemifield πŸ“–CompOpβ€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
add_div πŸ“–mathematicalβ€”DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
β€”div_eq_mul_inv
add_mul
Distrib.rightDistribClass
add_div' πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Distrib.toMul
β€”add_div
mul_div_cancel_rightβ‚€
GroupWithZero.toMulDivCancelClass
add_div_eq_mul_add_div πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Distrib.toMul
β€”eq_div_iff_mul_eq
right_distrib
Distrib.rightDistribClass
div_mul_cancelβ‚€
add_halves πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
add_div
add_self_div_two
add_self_div_two πŸ“–mathematicalβ€”DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
mul_two
mul_div_cancel_rightβ‚€
GroupWithZero.toMulDivCancelClass
two_ne_zero
div_add' πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Distrib.toMul
β€”add_comm
add_div'
div_add_div πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Distrib.toMul
β€”Commute.div_add_div
Commute.all
div_add_div_same πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”add_div
div_add_one πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”div_add_same
div_add_same πŸ“–mathematicalβ€”DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”div_self
add_div
div_neg_self πŸ“–mathematicalβ€”DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”div_neg_eq_neg_div
div_self
div_sub' πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”mul_comm
div_one
mul_one
div_sub_div
one_ne_zero
NeZero.one
DivisionRing.toNontrivial
div_sub_div πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”Commute.div_sub_div
Commute.all
div_sub_div_same πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
β€”sub_eq_add_neg
neg_div
add_div
div_sub_one πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”div_sub_same
div_sub_same πŸ“–mathematicalβ€”DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”div_self
div_sub_div_same
half_sub πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”Nat.instAtLeastTwoHAddOfNat
neg_sub
sub_half
inv_add_inv πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Distrib.toMul
β€”Commute.inv_add_inv
Commute.all
inv_add_inv' πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
Distrib.toMul
β€”invOf_add_invOf
inv_eq_selfβ‚€ πŸ“–mathematicalβ€”InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”eq_or_ne
inv_zero
NeZero.one
DivisionRing.toNontrivial
mul_eq_one_iff_inv_eqβ‚€
pow_two
sq_eq_one_iff
GroupWithZero.noZeroDivisors
inv_sub_inv πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”inv_eq_one_div
div_sub_div
one_mul
mul_one
inv_sub_inv' πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”invOf_sub_invOf
neg_div_self πŸ“–mathematicalβ€”DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”neg_div
div_self
ofDual_ratCast πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.instRatCast
β€”β€”
ofLex_ratCast πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
Lex.instRatCast
β€”β€”
one_add_div πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”same_add_div
one_div_add_one_div πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toMul
β€”Commute.one_div_add_one_div
Commute.all
one_div_mul_add_mul_one_div_eq_one_div_add_one_div πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toAdd
β€”one_div
inv_add_inv'
one_div_mul_sub_mul_one_div_eq_one_div_add_one_div πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
β€”one_div
inv_sub_inv'
one_sub_div πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
β€”same_sub_div
same_add_div πŸ“–mathematicalβ€”DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”div_self
add_div
same_sub_div πŸ“–mathematicalβ€”DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”div_self
div_sub_div_same
self_eq_invβ‚€ πŸ“–mathematicalβ€”InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”inv_eq_selfβ‚€
sub_div πŸ“–mathematicalβ€”DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”div_sub_div_same
sub_div' πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”div_one
mul_comm
mul_one
div_sub_div
one_ne_zero
NeZero.one
DivisionRing.toNontrivial
sub_half πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sub_eq_iff_eq_add
add_halves
toDual_ratCast πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
OrderDual.instRatCast
β€”β€”
toLex_ratCast πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Lex.instRatCast
β€”β€”

---

← Back to Index