Documentation Verification Report

CommBialgCat

πŸ“ Source: Mathlib/Algebra/Category/CommBialgCat.lean

Statistics

MetricCount
DefinitionsmonObjOpOf, CommBialgCat, hom, hom, hom', bialgEquivOfIso, bialgebra, carrier, commRing, hasForgetToCommAlgCat, instBialgebraObjForgetBialgHomCarrier, instCategory, instCoeSortType, instCommRingObjForgetBialgHomCarrier, instConcreteCategoryBialgHomCarrier, instInhabited, isoEquivBialgEquiv, isoMk, of, ofHom, ofSelfIso, commBialgCatEquivComonCommAlgCat, instBialgebraCarrierUnopCommAlgCatOfMonObjOpposite
23
Theoremsmul_op_of_unop_hom, one_op_of_unop_hom, ext, ext_iff, bialgEquivOfIso_apply, bialgEquivOfIso_symm_apply, coe_of, comp_apply, forget_map, forget_obj, forgetβ‚‚_commAlgCat_map, forgetβ‚‚_commAlgCat_obj, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, inv_hom_apply, isoEquivBialgEquiv_apply, isoEquivBialgEquiv_symm_apply, isoMk_hom, isoMk_inv, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, ofSelfIso_hom, ofSelfIso_inv, reflectsIsomorphisms_forget, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, commBialgCatEquivComonCommAlgCat_inverse_obj, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, instIsCommMonObjOppositeCommAlgCatOpOfOfIsCocomm, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, instIsMonHomOppositeCommAlgCatOpOfHomToAlgHomBialgHom
42
Total65

CommAlgCat

Definitions

NameCategoryTheorems
monObjOpOf πŸ“–CompOp
8 mathmath: commBialgCatEquivComonCommAlgCat_unitIso_inv_app, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, mul_op_of_unop_hom, instIsMonHomOppositeCommAlgCatOpOfHomToAlgHomBialgHom, one_op_of_unop_hom, instIsCommMonObjOppositeCommAlgCatOpOfOfIsCocomm, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, commBialgCatEquivComonCommAlgCat_counitIso_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
mul_op_of_unop_hom πŸ“–mathematicalβ€”Hom.hom
Opposite.unop
CommAlgCat
Opposite.op
of
Bialgebra.toAlgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorObj
Opposite
CategoryTheory.Category.opposite
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.monoidalCategoryOp
instMonoidalCategory
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonObj.mul
monObjOpOf
Bialgebra.comulAlgHom
β€”β€”
one_op_of_unop_hom πŸ“–mathematicalβ€”Hom.hom
Opposite.unop
CommAlgCat
Opposite.op
of
Bialgebra.toAlgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorUnit
Opposite
CategoryTheory.Category.opposite
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.monoidalCategoryOp
instMonoidalCategory
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonObj.one
monObjOpOf
Bialgebra.counitAlgHom
β€”β€”

CommBialgCat

Definitions

NameCategoryTheorems
bialgEquivOfIso πŸ“–CompOp
3 mathmath: isoEquivBialgEquiv_apply, bialgEquivOfIso_apply, bialgEquivOfIso_symm_apply
bialgebra πŸ“–CompOp
24 mathmath: ofSelfIso_inv, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, id_apply, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, forgetβ‚‚_commAlgCat_obj, bialgEquivOfIso_apply, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, reflectsIsomorphisms_forget, ofHom_hom, inv_hom_apply, hom_inv_apply, ofSelfIso_hom, comp_apply, bialgEquivOfIso_symm_apply, forget_obj, ofHom_apply, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, forget_map, forgetβ‚‚_commAlgCat_map, hom_id, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, hom_comp, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, commBialgCatEquivComonCommAlgCat_counitIso_inv_app
carrier πŸ“–CompOp
25 mathmath: ofSelfIso_inv, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, id_apply, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, forgetβ‚‚_commAlgCat_obj, bialgEquivOfIso_apply, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, reflectsIsomorphisms_forget, ofHom_hom, inv_hom_apply, coe_of, hom_inv_apply, ofSelfIso_hom, comp_apply, bialgEquivOfIso_symm_apply, forget_obj, ofHom_apply, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, forget_map, forgetβ‚‚_commAlgCat_map, hom_id, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, hom_comp, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, commBialgCatEquivComonCommAlgCat_counitIso_inv_app
commRing πŸ“–CompOp
24 mathmath: ofSelfIso_inv, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, id_apply, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, forgetβ‚‚_commAlgCat_obj, bialgEquivOfIso_apply, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, reflectsIsomorphisms_forget, ofHom_hom, inv_hom_apply, hom_inv_apply, ofSelfIso_hom, comp_apply, bialgEquivOfIso_symm_apply, forget_obj, ofHom_apply, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, forget_map, forgetβ‚‚_commAlgCat_map, hom_id, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, hom_comp, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, commBialgCatEquivComonCommAlgCat_counitIso_inv_app
hasForgetToCommAlgCat πŸ“–CompOp
2 mathmath: forgetβ‚‚_commAlgCat_obj, forgetβ‚‚_commAlgCat_map
instBialgebraObjForgetBialgHomCarrier πŸ“–CompOpβ€”
instCategory πŸ“–CompOp
31 mathmath: ofSelfIso_inv, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, id_apply, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, isoEquivBialgEquiv_apply, ofHom_comp, forgetβ‚‚_commAlgCat_obj, bialgEquivOfIso_apply, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, reflectsIsomorphisms_forget, inv_hom_apply, hom_inv_apply, isoEquivBialgEquiv_symm_apply, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, ofSelfIso_hom, comp_apply, bialgEquivOfIso_symm_apply, isoMk_hom, forget_obj, ofHom_apply, commBialgCatEquivComonCommAlgCat_inverse_obj, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, isoMk_inv, forget_map, ofHom_id, forgetβ‚‚_commAlgCat_map, hom_id, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, hom_comp, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, commBialgCatEquivComonCommAlgCat_counitIso_inv_app
instCoeSortType πŸ“–CompOpβ€”
instCommRingObjForgetBialgHomCarrier πŸ“–CompOpβ€”
instConcreteCategoryBialgHomCarrier πŸ“–CompOp
12 mathmath: id_apply, forgetβ‚‚_commAlgCat_obj, bialgEquivOfIso_apply, reflectsIsomorphisms_forget, inv_hom_apply, hom_inv_apply, comp_apply, bialgEquivOfIso_symm_apply, forget_obj, ofHom_apply, forget_map, forgetβ‚‚_commAlgCat_map
instInhabited πŸ“–CompOpβ€”
isoEquivBialgEquiv πŸ“–CompOp
2 mathmath: isoEquivBialgEquiv_apply, isoEquivBialgEquiv_symm_apply
isoMk πŸ“–CompOp
3 mathmath: isoEquivBialgEquiv_symm_apply, isoMk_hom, isoMk_inv
of πŸ“–CompOp
16 mathmath: ofSelfIso_inv, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, isoEquivBialgEquiv_apply, ofHom_comp, coe_of, isoEquivBialgEquiv_symm_apply, ofSelfIso_hom, isoMk_hom, ofHom_apply, commBialgCatEquivComonCommAlgCat_inverse_obj, hom_ofHom, isoMk_inv, ofHom_id, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, commBialgCatEquivComonCommAlgCat_counitIso_inv_app
ofHom πŸ“–CompOp
11 mathmath: commBialgCatEquivComonCommAlgCat_unitIso_inv_app, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, ofHom_comp, ofHom_hom, isoMk_hom, ofHom_apply, hom_ofHom, isoMk_inv, ofHom_id, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, commBialgCatEquivComonCommAlgCat_counitIso_inv_app
ofSelfIso πŸ“–CompOp
2 mathmath: ofSelfIso_inv, ofSelfIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
bialgEquivOfIso_apply πŸ“–mathematicalβ€”DFunLike.coe
BialgEquiv
CommRing.toCommSemiring
carrier
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgEquiv.instFunLike
bialgEquivOfIso
CategoryTheory.ConcreteCategory.hom
CommBialgCat
instCategory
BialgHom
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instConcreteCategoryBialgHomCarrier
CategoryTheory.Iso.hom
β€”β€”
bialgEquivOfIso_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
CoalgEquiv
CommRing.toCommSemiring
carrier
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commRing
Algebra.toModule
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
Bialgebra.toCoalgebra
CoalgEquiv.instFunLike
CoalgEquiv.symm
BialgEquiv.toCoalgEquiv
bialgEquivOfIso
CategoryTheory.ConcreteCategory.hom
CommBialgCat
instCategory
BialgHom
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instConcreteCategoryBialgHomCarrier
CategoryTheory.Iso.inv
β€”β€”
coe_of πŸ“–mathematicalβ€”carrier
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
CommBialgCat
instCategory
BialgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instConcreteCategoryBialgHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CommBialgCat
instCategory
CategoryTheory.types
CategoryTheory.forget
BialgHom
carrier
CommRing.toCommSemiring
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instConcreteCategoryBialgHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
β€”β€”
forget_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CommBialgCat
instCategory
CategoryTheory.types
CategoryTheory.forget
BialgHom
carrier
CommRing.toCommSemiring
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instConcreteCategoryBialgHomCarrier
β€”β€”
forgetβ‚‚_commAlgCat_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CommBialgCat
instCategory
CommAlgCat
CommAlgCat.instCategory
CategoryTheory.forgetβ‚‚
BialgHom
carrier
CommRing.toCommSemiring
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instConcreteCategoryBialgHomCarrier
AlgHom
CommAlgCat.carrier
CommAlgCat.commRing
CommAlgCat.algebra
AlgHom.funLike
CommAlgCat.instConcreteCategoryAlgHomCarrier
hasForgetToCommAlgCat
CommAlgCat.ofHom
AlgHomClass.toAlgHom
BialgHomClass.toAlgHomClass
BialgHom.bialgHomClass
Hom.hom
β€”β€”
forgetβ‚‚_commAlgCat_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CommBialgCat
instCategory
CommAlgCat
CommAlgCat.instCategory
CategoryTheory.forgetβ‚‚
BialgHom
carrier
CommRing.toCommSemiring
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instConcreteCategoryBialgHomCarrier
AlgHom
CommAlgCat.carrier
CommAlgCat.commRing
CommAlgCat.algebra
AlgHom.funLike
CommAlgCat.instConcreteCategoryAlgHomCarrier
hasForgetToCommAlgCat
CommAlgCat.of
β€”β€”
hom_comp πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
CommBialgCat
CategoryTheory.Category.toCategoryStruct
instCategory
BialgHom.comp
carrier
CommRing.toCommSemiring
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
carrier
CommRing.toCommSemiring
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
BialgHom
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
BialgHomClass.toAlgHomClass
BialgHom.bialgHomClass
Hom.hom
CategoryTheory.CategoryStruct.id
CommBialgCat
CategoryTheory.Category.toCategoryStruct
instCategory
AlgHom.id
β€”BialgHomClass.toAlgHomClass
BialgHom.bialgHomClass
hom_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
CommBialgCat
instCategory
BialgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instConcreteCategoryBialgHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom πŸ“–mathematicalβ€”Hom.hom
of
ofHom
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
CommBialgCat
instCategory
BialgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instConcreteCategoryBialgHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.id_apply
inv_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
CommBialgCat
instCategory
BialgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instConcreteCategoryBialgHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.hom_inv_id_apply
isoEquivBialgEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Iso
CommBialgCat
instCategory
of
BialgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
EquivLike.toFunLike
Equiv.instEquivLike
isoEquivBialgEquiv
bialgEquivOfIso
β€”β€”
isoEquivBialgEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
BialgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
CategoryTheory.Iso
CommBialgCat
instCategory
of
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
isoEquivBialgEquiv
isoMk
β€”β€”
isoMk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CommBialgCat
instCategory
of
isoMk
ofHom
BialgHomClass.toBialgHom
BialgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgEquiv.instFunLike
β€”β€”
isoMk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CommBialgCat
instCategory
of
isoMk
ofHom
BialgHomClass.toBialgHom
BialgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgEquiv.instFunLike
BialgEquiv.symm
β€”β€”
ofHom_apply πŸ“–mathematicalβ€”DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
CommBialgCat
instCategory
BialgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instConcreteCategoryBialgHomCarrier
ofHom
β€”β€”
ofHom_comp πŸ“–mathematicalβ€”ofHom
BialgHom.comp
CommRing.toCommSemiring
CommSemiring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
CategoryTheory.CategoryStruct.comp
CommBialgCat
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
carrier
commRing
bialgebra
Hom.hom
β€”β€”
ofHom_id πŸ“–mathematicalβ€”ofHom
BialgHom.id
CommRing.toCommSemiring
CommSemiring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
CategoryTheory.CategoryStruct.id
CommBialgCat
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofSelfIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CommBialgCat
instCategory
of
carrier
commRing
bialgebra
ofSelfIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
ofSelfIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CommBialgCat
instCategory
of
carrier
commRing
bialgebra
ofSelfIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
reflectsIsomorphisms_forget πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsIsomorphisms
CommBialgCat
instCategory
CategoryTheory.types
CategoryTheory.forget
BialgHom
carrier
CommRing.toCommSemiring
CommSemiring.toSemiring
commRing
Bialgebra.toAlgebra
bialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instConcreteCategoryBialgHomCarrier
β€”Equiv.left_inv
Equiv.right_inv
BialgHom.map_mul'
CategoryTheory.Iso.isIso_hom

CommBialgCat.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
12 mathmath: commBialgCatEquivComonCommAlgCat_unitIso_inv_app, CommBialgCat.hom_ext_iff, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CommBialgCat.ofHom_hom, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, CommBialgCat.hom_ofHom, CommBialgCat.forgetβ‚‚_commAlgCat_map, CommBialgCat.hom_id, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, CommBialgCat.hom_comp, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, commBialgCatEquivComonCommAlgCat_counitIso_inv_app
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext

CommBialgCat.Hom.Simps

Definitions

NameCategoryTheorems
hom πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
CommBialgCat πŸ“–CompData
31 mathmath: CommBialgCat.ofSelfIso_inv, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, CommBialgCat.id_apply, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CommBialgCat.isoEquivBialgEquiv_apply, CommBialgCat.ofHom_comp, CommBialgCat.forgetβ‚‚_commAlgCat_obj, CommBialgCat.bialgEquivOfIso_apply, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, CommBialgCat.reflectsIsomorphisms_forget, CommBialgCat.inv_hom_apply, CommBialgCat.hom_inv_apply, CommBialgCat.isoEquivBialgEquiv_symm_apply, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, CommBialgCat.ofSelfIso_hom, CommBialgCat.comp_apply, CommBialgCat.bialgEquivOfIso_symm_apply, CommBialgCat.isoMk_hom, CommBialgCat.forget_obj, CommBialgCat.ofHom_apply, commBialgCatEquivComonCommAlgCat_inverse_obj, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, CommBialgCat.isoMk_inv, CommBialgCat.forget_map, CommBialgCat.ofHom_id, CommBialgCat.forgetβ‚‚_commAlgCat_map, CommBialgCat.hom_id, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, CommBialgCat.hom_comp, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, commBialgCatEquivComonCommAlgCat_counitIso_inv_app
commBialgCatEquivComonCommAlgCat πŸ“–CompOp
9 mathmath: commBialgCatEquivComonCommAlgCat_unitIso_inv_app, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, commBialgCatEquivComonCommAlgCat_inverse_obj, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, commBialgCatEquivComonCommAlgCat_counitIso_inv_app
instBialgebraCarrierUnopCommAlgCatOfMonObjOpposite πŸ“–CompOp
5 mathmath: commBialgCatEquivComonCommAlgCat_unitIso_inv_app, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, commBialgCatEquivComonCommAlgCat_inverse_obj, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, commBialgCatEquivComonCommAlgCat_counitIso_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
commBialgCatEquivComonCommAlgCat_counitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Mon
CommAlgCat
CategoryTheory.Category.opposite
CommAlgCat.instCategory
CategoryTheory.monoidalCategoryOp
CommAlgCat.instMonoidalCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.comp
CommBialgCat
CommBialgCat.instCategory
CommBialgCat.of
CommAlgCat.carrier
Opposite.unop
CategoryTheory.Mon.X
CommAlgCat.commRing
instBialgebraCarrierUnopCommAlgCatOfMonObjOpposite
CategoryTheory.Mon.mon
CommBialgCat.ofHom
BialgHom.ofAlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
CommAlgCat.Hom.hom
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.Hom.hom
Opposite.op
CommAlgCat.of
CommBialgCat.carrier
CommBialgCat.commRing
Bialgebra.toAlgebra
CommBialgCat.bialgebra
CommAlgCat.monObjOpOf
Quiver.Hom.op
CategoryTheory.Mon.Hom.mk'
CommAlgCat.ofHom
AlgHomClass.toAlgHom
BialgHom
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
CommBialgCat.Hom.hom
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Equivalence.counitIso
commBialgCatEquivComonCommAlgCat
CategoryTheory.CategoryStruct.id
β€”β€”
commBialgCatEquivComonCommAlgCat_counitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Mon
CommAlgCat
CategoryTheory.Category.opposite
CommAlgCat.instCategory
CategoryTheory.monoidalCategoryOp
CommAlgCat.instMonoidalCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CommBialgCat
CommBialgCat.instCategory
CommBialgCat.of
CommAlgCat.carrier
Opposite.unop
CategoryTheory.Mon.X
CommAlgCat.commRing
instBialgebraCarrierUnopCommAlgCatOfMonObjOpposite
CategoryTheory.Mon.mon
CommBialgCat.ofHom
BialgHom.ofAlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
CommAlgCat.Hom.hom
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.Hom.hom
Opposite.op
CommAlgCat.of
CommBialgCat.carrier
CommBialgCat.commRing
Bialgebra.toAlgebra
CommBialgCat.bialgebra
CommAlgCat.monObjOpOf
Quiver.Hom.op
CategoryTheory.Mon.Hom.mk'
CommAlgCat.ofHom
AlgHomClass.toAlgHom
BialgHom
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
CommBialgCat.Hom.hom
CategoryTheory.Equivalence.counitIso
commBialgCatEquivComonCommAlgCat
CategoryTheory.CategoryStruct.id
β€”β€”
commBialgCatEquivComonCommAlgCat_functor_map_unop_hom πŸ“–mathematicalβ€”CategoryTheory.Mon.Hom.hom
Opposite
CommAlgCat
CategoryTheory.Category.opposite
CommAlgCat.instCategory
CategoryTheory.monoidalCategoryOp
CommAlgCat.instMonoidalCategory
Opposite.unop
CategoryTheory.Mon
CategoryTheory.Functor.obj
CommBialgCat
CommBialgCat.instCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Equivalence.functor
commBialgCatEquivComonCommAlgCat
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
Quiver.Hom.op
CommAlgCat.of
CommBialgCat.carrier
CommBialgCat.commRing
Bialgebra.toAlgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
CommBialgCat.bialgebra
CommAlgCat.ofHom
AlgHomClass.toAlgHom
BialgHom
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
BialgHomClass.toAlgHomClass
BialgHom.bialgHomClass
CommBialgCat.Hom.hom
β€”β€”
commBialgCatEquivComonCommAlgCat_functor_obj_unop_X πŸ“–mathematicalβ€”CategoryTheory.Mon.X
Opposite
CommAlgCat
CategoryTheory.Category.opposite
CommAlgCat.instCategory
CategoryTheory.monoidalCategoryOp
CommAlgCat.instMonoidalCategory
Opposite.unop
CategoryTheory.Mon
CategoryTheory.Functor.obj
CommBialgCat
CommBialgCat.instCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Equivalence.functor
commBialgCatEquivComonCommAlgCat
Opposite.op
CommAlgCat.of
CommBialgCat.carrier
CommBialgCat.commRing
Bialgebra.toAlgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
CommBialgCat.bialgebra
β€”β€”
commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
CommBialgCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Mon
CommAlgCat
CategoryTheory.Category.opposite
CommAlgCat.instCategory
CategoryTheory.monoidalCategoryOp
CommAlgCat.instMonoidalCategory
CategoryTheory.Mon.instCategory
CommBialgCat
CommBialgCat.instCategory
CategoryTheory.Equivalence.inverse
commBialgCatEquivComonCommAlgCat
CommRing.toCommSemiring
CommSemiring.toSemiring
CommBialgCat.commRing
Bialgebra.toAlgebra
CommBialgCat.bialgebra
BialgHom
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
BialgHomClass.toAlgHomClass
BialgHom.bialgHomClass
CommBialgCat.Hom.hom
CategoryTheory.Functor.map
CommAlgCat.Hom.hom
Opposite.unop
CategoryTheory.Mon.X
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.Hom.hom
β€”BialgHomClass.toAlgHomClass
BialgHom.bialgHomClass
commBialgCatEquivComonCommAlgCat_inverse_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Mon
CommAlgCat
CategoryTheory.Category.opposite
CommAlgCat.instCategory
CategoryTheory.monoidalCategoryOp
CommAlgCat.instMonoidalCategory
CategoryTheory.Mon.instCategory
CommBialgCat
CommBialgCat.instCategory
CategoryTheory.Equivalence.inverse
commBialgCatEquivComonCommAlgCat
CommBialgCat.of
CommAlgCat.carrier
Opposite.unop
CategoryTheory.Mon.X
CommAlgCat.commRing
instBialgebraCarrierUnopCommAlgCatOfMonObjOpposite
CategoryTheory.Mon.mon
β€”β€”
commBialgCatEquivComonCommAlgCat_unitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CommBialgCat
CommBialgCat.instCategory
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Mon
CommAlgCat
CategoryTheory.Category.opposite
CommAlgCat.instCategory
CategoryTheory.monoidalCategoryOp
CommAlgCat.instMonoidalCategory
CategoryTheory.Mon.instCategory
Opposite.op
CommAlgCat.of
CommBialgCat.carrier
CommBialgCat.commRing
Bialgebra.toAlgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
CommBialgCat.bialgebra
CommAlgCat.monObjOpOf
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.Hom.mk'
CommAlgCat.ofHom
AlgHomClass.toAlgHom
BialgHom
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
CommBialgCat.Hom.hom
CommBialgCat.of
CommAlgCat.carrier
Opposite.unop
CategoryTheory.Mon.X
CommAlgCat.commRing
instBialgebraCarrierUnopCommAlgCatOfMonObjOpposite
CategoryTheory.Mon.mon
CommBialgCat.ofHom
BialgHom.ofAlgHom
CommAlgCat.Hom.hom
Quiver.Hom.unop
CategoryTheory.Mon.Hom.hom
CategoryTheory.Equivalence.unitIso
commBialgCatEquivComonCommAlgCat
CategoryTheory.CategoryStruct.id
β€”β€”
commBialgCatEquivComonCommAlgCat_unitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CommBialgCat
CommBialgCat.instCategory
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Mon
CommAlgCat
CategoryTheory.Category.opposite
CommAlgCat.instCategory
CategoryTheory.monoidalCategoryOp
CommAlgCat.instMonoidalCategory
CategoryTheory.Mon.instCategory
Opposite.op
CommAlgCat.of
CommBialgCat.carrier
CommBialgCat.commRing
Bialgebra.toAlgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
CommBialgCat.bialgebra
CommAlgCat.monObjOpOf
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.Hom.mk'
CommAlgCat.ofHom
AlgHomClass.toAlgHom
BialgHom
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
CommBialgCat.Hom.hom
CommBialgCat.of
CommAlgCat.carrier
Opposite.unop
CategoryTheory.Mon.X
CommAlgCat.commRing
instBialgebraCarrierUnopCommAlgCatOfMonObjOpposite
CategoryTheory.Mon.mon
CommBialgCat.ofHom
BialgHom.ofAlgHom
CommAlgCat.Hom.hom
Quiver.Hom.unop
CategoryTheory.Mon.Hom.hom
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Equivalence.unitIso
commBialgCatEquivComonCommAlgCat
CategoryTheory.CategoryStruct.id
β€”β€”
instIsCommMonObjOppositeCommAlgCatOpOfOfIsCocomm πŸ“–mathematicalβ€”CategoryTheory.IsCommMonObj
Opposite
CommAlgCat
CategoryTheory.Category.opposite
CommAlgCat.instCategory
CategoryTheory.monoidalCategoryOp
CommAlgCat.instMonoidalCategory
CategoryTheory.instBraidedCategoryOpposite
CommAlgCat.instBraidedCategory
Opposite.op
CommAlgCat.of
Bialgebra.toAlgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
CommAlgCat.monObjOpOf
β€”CommAlgCat.hom_ext
AlgHom.ext
Coalgebra.comm_comul
instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier πŸ“–mathematicalβ€”CategoryTheory.IsCommMonObj
Opposite
CommAlgCat
CategoryTheory.Category.opposite
CommAlgCat.instCategory
CategoryTheory.monoidalCategoryOp
CommAlgCat.instMonoidalCategory
CategoryTheory.instBraidedCategoryOpposite
CommAlgCat.instBraidedCategory
CategoryTheory.Mon.X
Opposite.unop
CategoryTheory.Mon
CategoryTheory.Functor.obj
CommBialgCat
CommBialgCat.instCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Equivalence.functor
commBialgCatEquivComonCommAlgCat
CategoryTheory.Mon.mon
β€”instIsCommMonObjOppositeCommAlgCatOpOfOfIsCocomm
instIsMonHomOppositeCommAlgCatOpOfHomToAlgHomBialgHom πŸ“–mathematicalβ€”CategoryTheory.IsMonHom
Opposite
CommAlgCat
CategoryTheory.Category.opposite
CommAlgCat.instCategory
CategoryTheory.monoidalCategoryOp
CommAlgCat.instMonoidalCategory
Opposite.op
CommAlgCat.of
Bialgebra.toAlgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
CommAlgCat.monObjOpOf
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommAlgCat.ofHom
AlgHomClass.toAlgHom
BialgHom
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
BialgHomClass.toAlgHomClass
BialgHom.bialgHomClass
β€”BialgHomClass.toAlgHomClass
BialgHom.bialgHomClass
CommAlgCat.hom_ext
AlgHom.ext
BialgHomClass.counitAlgHom_comp
BialgHomClass.map_comp_comulAlgHom

---

← Back to Index