Documentation

Mathlib.Algebra.Category.CommBialgCat

The category of commutative bialgebras over a commutative ring #

This file defines the bundled category CommBialgCat R of commutative bialgebras over a fixed commutative ring R along with the forgetful functor to CommAlgCat.

structure CommBialgCat (R : Type u) [CommRing R] :
Type (max u (v + 1))

The category of commutative R-bialgebras and their morphisms.

Instances For
    @[reducible, inline]
    abbrev CommBialgCat.of (R : Type u) [CommRing R] (X : Type v) [CommRing X] [Bialgebra R X] :

    Turn an unbundled R-bialgebra into the corresponding object in the category of R-bialgebras.

    This is the preferred way to construct a term of CommBialgCat R.

    Equations
      Instances For
        theorem CommBialgCat.coe_of (R : Type u) [CommRing R] (X : Type v) [CommRing X] [Bialgebra R X] :
        ↑(of R X) = X
        structure CommBialgCat.Hom {R : Type u} [CommRing R] (A B : CommBialgCat R) :

        The type of morphisms in CommBialgCat R.

        Instances For
          theorem CommBialgCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {A B : CommBialgCat R} {x y : A.Hom B} (hom' : x.hom' = y.hom') :
          x = y
          theorem CommBialgCat.Hom.ext_iff {R : Type u} {inst✝ : CommRing R} {A B : CommBialgCat R} {x y : A.Hom B} :
          x = y ↔ x.hom' = y.hom'
          @[reducible, inline]
          abbrev CommBialgCat.Hom.hom {R : Type u} [CommRing R] {A B : CommBialgCat R} (f : A.Hom B) :
          ↑A →ₐc[R] ↑B

          Turn a morphism in CommBialgCat back into a BialgHom.

          Equations
            Instances For
              @[reducible, inline]
              abbrev CommBialgCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : Bialgebra R X} {x✝³ : Bialgebra R Y} (f : X →ₐc[R] Y) :
              of R X ⟢ of R Y

              Typecheck a BialgHom as a morphism in CommBialgCat R.

              Equations
                Instances For
                  def CommBialgCat.Hom.Simps.hom {R : Type u} [CommRing R] (A B : CommBialgCat R) (f : A.Hom B) :
                  ↑A →ₐc[R] ↑B

                  Use the ConcreteCategory.hom projection for @[simps] lemmas.

                  Equations
                    Instances For

                      The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                      theorem CommBialgCat.hom_ext {R : Type u} [CommRing R] {A B : CommBialgCat R} {f g : A ⟢ B} (hf : Hom.hom f = Hom.hom g) :
                      f = g
                      @[simp]
                      theorem CommBialgCat.hom_ofHom {R : Type u} [CommRing R] {X Y : Type v} [CommRing X] [Bialgebra R X] [CommRing Y] [Bialgebra R Y] (f : X →ₐc[R] Y) :
                      @[simp]
                      theorem CommBialgCat.ofHom_hom {R : Type u} [CommRing R] {A B : CommBialgCat R} (f : A ⟢ B) :
                      def CommBialgCat.ofSelfIso {R : Type u} [CommRing R] (M : CommBialgCat R) :
                      of R ↑M β‰… M

                      Forgetting to the underlying type and then building the bundled object returns the original bialgebra.

                      Equations
                        Instances For
                          def CommBialgCat.isoMk {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : Bialgebra R X} {x✝³ : Bialgebra R Y} (e : X ≃ₐc[R] Y) :
                          of R X β‰… of R Y

                          Build an isomorphism in the category CommBialgCat R from a BialgEquiv between Bialgebras.

                          Equations
                            Instances For
                              @[simp]
                              theorem CommBialgCat.isoMk_inv {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : Bialgebra R X} {x✝³ : Bialgebra R Y} (e : X ≃ₐc[R] Y) :
                              (isoMk e).inv = ofHom ↑e.symm
                              @[simp]
                              theorem CommBialgCat.isoMk_hom {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : Bialgebra R X} {x✝³ : Bialgebra R Y} (e : X ≃ₐc[R] Y) :
                              (isoMk e).hom = ofHom ↑e
                              def CommBialgCat.bialgEquivOfIso {R : Type u} [CommRing R] {A B : CommBialgCat R} (i : A β‰… B) :
                              ↑A ≃ₐc[R] ↑B

                              Build a BialgEquiv from an isomorphism in the category CommBialgCat R.

                              Equations
                                Instances For

                                  Bialgebra equivalences between Bialgebras are the same as isomorphisms in CommBialgCat.

                                  Equations
                                    Instances For

                                      Commutative bialgebras over a commutative ring R are the same thing as comonoid R-algebras.

                                      Equations
                                        Instances For