Documentation Verification Report

ChangeOfRings

πŸ“ Source: Mathlib/Algebra/Category/ModuleCat/ChangeOfRings.lean

Statistics

MetricCount
DefinitionsΒ«term_βŠ—β‚œ[_,_]_Β», distribMulAction, hasSMul, instCoeFunCarrierObj'Forall, instCoeFunCarrierObjCoextendScalarsForall, isModule, map', mulAction, obj', map, evalAt, fromExtendScalars, toRestrictScalars, map, counit, homEquiv, unit, map', obj', map', obj', fromRestriction, toRestriction, app', counit', unit', coextendScalars, extendRestrictScalarsAdj, extendScalars, extendScalarsComp, extendScalarsId, instModuleCarrierObjRestrictScalars, restrictCoextendScalarsAdj, restrictScalars, restrictScalarsComp, restrictScalarsComp', restrictScalarsComp'App, restrictScalarsCongr, restrictScalarsEquivalenceOfRingEquiv, restrictScalarsId, restrictScalarsId', restrictScalarsId'App, semilinearMapAddEquiv
43
TheoremsinstLinearRestrictScalars, restrictScalarsEquivalenceOfRingEquiv_linear, map'_hom_apply_apply, map_apply, smul_apply, smul_apply', map_hom_apply, evalAt_apply, fromExtendScalars_hom_apply, toRestrictScalars_hom_apply, counit_app, homEquiv_symm_apply, unit_app, hom_ext, hom_ext_iff, map'_comp, map'_id, map_tmul, smul_tmul, fromRestriction_hom_apply_apply, toRestriction_hom_apply, counit'_app, unit'_app, extendRestrictScalarsAdj_homEquiv_apply, extendRestrictScalarsAdj_unit_app_apply, extendScalarsComp_hom_app_one_tmul, extendScalarsId_hom_app_one_tmul, extendScalarsId_inv_app_apply, extendScalars_assoc, extendScalars_assoc', extendScalars_assoc_assoc, extendScalars_comp_id, extendScalars_comp_id_assoc, extendScalars_id_comp, extendScalars_id_comp_assoc, homEquiv_extendScalarsComp, homEquiv_extendScalarsId, instAdditiveRestrictScalars, instFaithfulRestrictScalars, instIsLeftAdjointExtendScalars, instIsLeftAdjointRestrictScalars, instIsRightAdjointCoextendScalars, instIsRightAdjointRestrictScalars, instPreservesMonomorphismsRestrictScalars, instReflectsIsomorphismsRestrictScalars, preservesColimit_restrictScalars, preservesLimit_restrictScalars, map_apply, smul_def, smul_def', restrictScalarsComp'App_hom_apply, restrictScalarsComp'App_hom_naturality, restrictScalarsComp'App_hom_naturality_assoc, restrictScalarsComp'App_inv_apply, restrictScalarsComp'App_inv_naturality, restrictScalarsComp'App_inv_naturality_assoc, restrictScalarsComp'_hom_app, restrictScalarsComp'_inv_app, restrictScalarsCongr_hom_app, restrictScalarsCongr_inv_app, restrictScalarsCongr_symm, restrictScalarsEquivalenceOfRingEquiv_additive, restrictScalarsId'App_hom_apply, restrictScalarsId'App_hom_naturality, restrictScalarsId'App_hom_naturality_assoc, restrictScalarsId'App_inv_apply, restrictScalarsId'App_inv_naturality, restrictScalarsId'App_inv_naturality_assoc, restrictScalarsId'_hom_app, restrictScalarsId'_inv_app, restrictScalars_isEquivalence_of_ringEquiv, sMulCommClass_mk, semilinearMapAddEquiv_apply, semilinearMapAddEquiv_symm_apply_apply
74
Total117

ChangeOfRings

Definitions

NameCategoryTheorems
Β«term_βŠ—β‚œ[_,_]_Β» πŸ“–CompOpβ€”

ModuleCat

Definitions

NameCategoryTheorems
coextendScalars πŸ“–CompOp
7 mathmath: instIsRightAdjointCoextendScalars, RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, RestrictionCoextensionAdj.counit'_app, CoextendScalars.smul_apply, RestrictionCoextensionAdj.unit'_app, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, CoextendScalars.map_apply
extendRestrictScalarsAdj πŸ“–CompOp
4 mathmath: extendRestrictScalarsAdj_homEquiv_apply, homEquiv_extendScalarsComp, extendRestrictScalarsAdj_unit_app_apply, homEquiv_extendScalarsId
extendScalars πŸ“–CompOp
28 mathmath: extendScalarsId_hom_app_one_tmul, preservesFiniteLimits_extendScalars_of_flat, extendRestrictScalarsAdj_homEquiv_apply, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, ExtendRestrictScalarsAdj.Counit.map_hom_apply, extendScalars_assoc_assoc, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, CommRingCat.moduleCatExtendScalarsPseudofunctor_map, reflectsIsomorphisms_extendScalars_of_faithfullyFlat, ExtendRestrictScalarsAdj.homEquiv_symm_apply, homEquiv_extendScalarsComp, ExtendScalars.map_tmul, extendScalars_id_comp_assoc, extendScalars_assoc', extendScalars_id_comp, ExtendRestrictScalarsAdj.counit_app, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapComp, extendScalarsComp_hom_app_one_tmul, instIsLeftAdjointExtendScalars, extendScalars_comp_id_assoc, extendScalars_comp_id, extendRestrictScalarsAdj_unit_app_apply, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapId, extendScalarsId_inv_app_apply, homEquiv_extendScalarsId, ExtendScalars.hom_ext_iff, extendScalars_assoc, ExtendRestrictScalarsAdj.unit_app
extendScalarsComp πŸ“–CompOp
10 mathmath: extendScalars_assoc_assoc, homEquiv_extendScalarsComp, extendScalars_id_comp_assoc, extendScalars_assoc', extendScalars_id_comp, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapComp, extendScalarsComp_hom_app_one_tmul, extendScalars_comp_id_assoc, extendScalars_comp_id, extendScalars_assoc
extendScalarsId πŸ“–CompOp
8 mathmath: extendScalarsId_hom_app_one_tmul, extendScalars_id_comp_assoc, extendScalars_id_comp, extendScalars_comp_id_assoc, extendScalars_comp_id, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapId, extendScalarsId_inv_app_apply, homEquiv_extendScalarsId
instModuleCarrierObjRestrictScalars πŸ“–CompOp
6 mathmath: ExtendRestrictScalarsAdj.Counit.map_hom_apply, PresheafOfModules.map_smul, PresheafOfModules.Monoidal.tensorObj_map_tmul, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, ExtendScalars.smul_tmul, ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply
restrictCoextendScalarsAdj πŸ“–CompOpβ€”
restrictScalars πŸ“–CompOp
103 mathmath: instPreservesMonomorphismsRestrictScalars, CommRingCat.KaehlerDifferential.map_d, restrictScalars.map_apply, restrictScalarsCongr_symm, restrictScalarsId'App_inv_naturality_assoc, extendScalarsId_hom_app_one_tmul, PresheafOfModules.restrictScalars_map_app, restrictScalarsComp'App_hom_apply, CoextendScalars.smul_apply', PresheafOfModules.limitPresheafOfModules_map, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, PresheafOfModules.sections_property, PresheafOfModules.toSheafify_app_apply', PresheafOfModules.Derivation.d_map, RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, extendRestrictScalarsAdj_homEquiv_apply, restrictScalarsComp'_inv_app, PresheafOfModules.congr_map_apply, PresheafOfModules.restrictScalarsObj_map, restrictScalarsId'App_hom_naturality, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, restrictScalars_isEquivalence_of_ringEquiv, restrictScalarsComp'_hom_app, PresheafOfModules.restrictScalarsObj_obj, ExtendRestrictScalarsAdj.Counit.map_hom_apply, PresheafOfModules.map_comp_apply, RestrictionCoextensionAdj.counit'_app, PresheafOfModules.pushforward_map_app_apply', CoextendScalars.smul_apply, PresheafOfModules.unit_map_one, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapId, restrictScalarsId'App_inv_naturality, PresheafOfModules.map_smul, restrictScalarsId'_inv_app, PresheafOfModules.Monoidal.tensorObj_map_tmul, restrictScalarsId'App_hom_apply, restrictScalarsId'App_hom_naturality_assoc, PresheafOfModules.freeObj_map, CommRingCat.moduleCatRestrictScalarsPseudofunctor_map, PresheafOfModules.presheaf_map_apply_coe, restrictScalarsComp'App_hom_naturality_assoc, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, restrictScalarsCongr_hom_app, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, instIsRightAdjointRestrictScalars, instIsLeftAdjointRestrictScalars, PresheafOfModules.pushforward_obj_map_apply, ExtendRestrictScalarsAdj.homEquiv_symm_apply, RestrictionCoextensionAdj.unit'_app, RingCat.moduleCatRestrictScalarsPseudofunctor_mapId, Algebra.instLinearRestrictScalars, instReflectsIsomorphismsRestrictScalars, SheafOfModules.pushforwardPushforwardAdj_unit_app_val_app, ExtendScalars.smul_tmul, restrictScalarsComp'App_hom_naturality, homEquiv_extendScalarsComp, ExtendScalars.map_tmul, PresheafOfModules.map_comp, RingCat.moduleCatRestrictScalarsPseudofunctor_map, restrictScalarsComp'App_inv_naturality, restrictScalarsComp'App_inv_naturality_assoc, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_map_d, PresheafOfModules.pushforward_obj_obj, instAdditiveRestrictScalars, PresheafOfModules.Hom.naturality_assoc, PresheafOfModules.restriction_app, restrictScalars.smul_def, restrictScalarsId'_hom_app, ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, PresheafOfModules.instHasLimitModuleCatCarrierObjOppositeRingCatCompEvaluationRestrictScalarsHomMap, ExtendRestrictScalarsAdj.counit_app, SheafOfModules.pushforwardNatTrans_app_val_app, instFaithfulRestrictScalars, PresheafOfModules.map_id, extendScalarsComp_hom_app_one_tmul, preservesFiniteLimits_tensorLeft_of_ringHomFlat, SheafOfModules.pushforwardPushforwardEquivalence_unit_app_val_app, restrictScalars.smul_def', PresheafOfModules.pushforward_obj_map_apply', PresheafOfModules.Hom.naturality, SheafOfModules.pushforwardPushforwardAdj_counit_app_val_app, CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul_aux, extendRestrictScalarsAdj_unit_app_apply, SheafOfModules.pushforwardNatTrans_app_val_app_apply, PresheafOfModules.ofPresheaf_map, PresheafOfModules.naturality_apply, extendScalarsId_inv_app_apply, semilinearMapAddEquiv_symm_apply_apply, preservesLimit_restrictScalars, restrictScalarsCongr_inv_app, semilinearMapAddEquiv_apply, CoextendScalars.map'_hom_apply_apply, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, SheafOfModules.pushforwardPushforwardEquivalence_counit_app_val_app, homEquiv_extendScalarsId, ExtendScalars.hom_ext_iff, PresheafOfModules.map_comp_assoc, restrictScalarsId'App_inv_apply, restrictScalarsComp'App_inv_apply, preservesColimit_restrictScalars, ExtendRestrictScalarsAdj.unit_app, CoextendScalars.map_apply
restrictScalarsComp πŸ“–CompOp
3 mathmath: CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, homEquiv_extendScalarsComp, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp
restrictScalarsComp' πŸ“–CompOp
4 mathmath: restrictScalarsComp'_inv_app, restrictScalarsComp'_hom_app, PresheafOfModules.map_comp, PresheafOfModules.map_comp_assoc
restrictScalarsComp'App πŸ“–CompOp
8 mathmath: restrictScalarsComp'App_hom_apply, restrictScalarsComp'_inv_app, restrictScalarsComp'_hom_app, restrictScalarsComp'App_hom_naturality_assoc, restrictScalarsComp'App_hom_naturality, restrictScalarsComp'App_inv_naturality, restrictScalarsComp'App_inv_naturality_assoc, restrictScalarsComp'App_inv_apply
restrictScalarsCongr πŸ“–CompOp
3 mathmath: restrictScalarsCongr_symm, restrictScalarsCongr_hom_app, restrictScalarsCongr_inv_app
restrictScalarsEquivalenceOfRingEquiv πŸ“–CompOp
2 mathmath: restrictScalarsEquivalenceOfRingEquiv_additive, Algebra.restrictScalarsEquivalenceOfRingEquiv_linear
restrictScalarsId πŸ“–CompOp
3 mathmath: CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapId, RingCat.moduleCatRestrictScalarsPseudofunctor_mapId, homEquiv_extendScalarsId
restrictScalarsId' πŸ“–CompOp
3 mathmath: restrictScalarsId'_inv_app, restrictScalarsId'_hom_app, PresheafOfModules.map_id
restrictScalarsId'App πŸ“–CompOp
8 mathmath: restrictScalarsId'App_inv_naturality_assoc, restrictScalarsId'App_hom_naturality, restrictScalarsId'App_inv_naturality, restrictScalarsId'_inv_app, restrictScalarsId'App_hom_apply, restrictScalarsId'App_hom_naturality_assoc, restrictScalarsId'_hom_app, restrictScalarsId'App_inv_apply
semilinearMapAddEquiv πŸ“–CompOp
2 mathmath: semilinearMapAddEquiv_symm_apply_apply, semilinearMapAddEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
extendRestrictScalarsAdj_homEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
CommRing.toRing
moduleCategory
restrictScalars
carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
extendScalars
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
extendRestrictScalarsAdj
TensorProduct.tmul
CommRing.toCommSemiring
of
Ring.toAddCommGroup
Semiring.toModule
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
extendRestrictScalarsAdj_unit_app_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
CommRing.toRing
moduleCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
extendScalars
restrictScalars
carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
extendRestrictScalarsAdj
TensorProduct.tmul
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.compHom
CommSemiring.toSemiring
Semiring.toModule
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
extendScalarsComp_hom_app_one_tmul πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
CommRing.toRing
moduleCategory
extendScalars
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Functor.comp
carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
extendScalarsComp
TensorProduct.tmul
restrictScalars
of
Ring.toAddCommGroup
Semiring.toModule
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.compHom
TensorProduct.addCommMonoid
TensorProduct.leftModule
NonUnitalNonAssocRing.toAddCommGroup
NonAssocSemiring.toNonUnitalNonAssocSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
MulActionWithZero.toMulAction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
MonoidWithZero.toMulActionWithZero
β€”extendRestrictScalarsAdj_homEquiv_apply
homEquiv_extendScalarsComp
extendScalarsId_hom_app_one_tmul πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
CommRing.toRing
moduleCategory
extendScalars
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Functor.id
carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
extendScalarsId
TensorProduct.tmul
restrictScalars
of
Ring.toAddCommGroup
Semiring.toModule
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”extendRestrictScalarsAdj_homEquiv_apply
homEquiv_extendScalarsId
extendScalarsId_inv_app_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
CommRing.toRing
moduleCategory
CategoryTheory.Functor.id
extendScalars
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
extendScalarsId
TensorProduct.tmul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
restrictScalars
of
Ring.toAddCommGroup
Semiring.toModule
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
extendScalars_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
ModuleCat
CommRing.toRing
moduleCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
extendScalars
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
extendScalarsComp
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor.associator
β€”CategoryTheory.NatTrans.ext'
ExtendScalars.hom_ext
extendScalarsComp_hom_app_one_tmul
ExtendScalars.map_tmul
extendScalars_assoc' πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
ModuleCat
CommRing.toRing
moduleCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
extendScalars
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
extendScalarsComp
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.associator
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
β€”extendScalars_assoc_assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.id_comp
extendScalars_assoc_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
ModuleCat
CommRing.toRing
moduleCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
extendScalars
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
extendScalarsComp
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor.associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
extendScalars_assoc
extendScalars_comp_id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
ModuleCat
CommRing.toRing
moduleCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
extendScalars
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
extendScalarsComp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerLeft
extendScalarsId
CategoryTheory.Functor.rightUnitor
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.NatTrans.ext'
ExtendScalars.hom_ext
extendScalarsComp_hom_app_one_tmul
extendScalarsId_hom_app_one_tmul
extendScalars_comp_id_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
ModuleCat
CommRing.toRing
moduleCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
extendScalars
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
extendScalarsComp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerLeft
extendScalarsId
CategoryTheory.Functor.rightUnitor
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
extendScalars_comp_id
extendScalars_id_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
ModuleCat
CommRing.toRing
moduleCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
extendScalars
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
extendScalarsComp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerRight
extendScalarsId
CategoryTheory.Functor.leftUnitor
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.NatTrans.ext'
ExtendScalars.hom_ext
extendScalarsComp_hom_app_one_tmul
ExtendScalars.map_tmul
extendScalarsId_hom_app_one_tmul
extendScalars_id_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
ModuleCat
CommRing.toRing
moduleCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
extendScalars
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
extendScalarsComp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerRight
extendScalarsId
CategoryTheory.Functor.leftUnitor
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
extendScalars_id_comp
homEquiv_extendScalarsComp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
ModuleCat
CommRing.toRing
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
CategoryTheory.Functor.obj
extendScalars
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Functor.comp
restrictScalars
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
extendRestrictScalarsAdj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
extendScalarsComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.id
Ring.toSemiring
ExtendScalars.obj'
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
restrictScalarsComp
β€”CategoryTheory.Adjunction.comp_unit_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Adjunction.homEquiv_unit
CategoryTheory.Adjunction.unit_naturality_assoc
CategoryTheory.Adjunction.right_triangle_components
homEquiv_extendScalarsId πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
ModuleCat
CommRing.toRing
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
CategoryTheory.Functor.obj
extendScalars
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Functor.id
restrictScalars
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
extendRestrictScalarsAdj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
extendScalarsId
Ring.toSemiring
CategoryTheory.Iso.inv
restrictScalarsId
β€”hom_ext
LinearMap.ext
extendRestrictScalarsAdj_homEquiv_apply
extendScalarsId_inv_app_apply
comp_apply
CategoryTheory.Iso.inv_hom_id_app
instAdditiveRestrictScalars πŸ“–mathematicalβ€”CategoryTheory.Functor.Additive
ModuleCat
moduleCategory
instPreadditive
restrictScalars
β€”β€”
instFaithfulRestrictScalars πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
ModuleCat
moduleCategory
restrictScalars
β€”hom_ext
LinearMap.ext
DFunLike.congr_fun
hom_ext_iff
instIsLeftAdjointExtendScalars πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLeftAdjoint
ModuleCat
CommRing.toRing
moduleCategory
extendScalars
β€”CategoryTheory.Adjunction.isLeftAdjoint
instIsLeftAdjointRestrictScalars πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLeftAdjoint
ModuleCat
moduleCategory
restrictScalars
β€”CategoryTheory.Adjunction.isLeftAdjoint
instIsRightAdjointCoextendScalars πŸ“–mathematicalβ€”CategoryTheory.Functor.IsRightAdjoint
ModuleCat
moduleCategory
coextendScalars
β€”CategoryTheory.Adjunction.isRightAdjoint
instIsRightAdjointRestrictScalars πŸ“–mathematicalβ€”CategoryTheory.Functor.IsRightAdjoint
ModuleCat
CommRing.toRing
moduleCategory
restrictScalars
β€”CategoryTheory.Adjunction.isRightAdjoint
instPreservesMonomorphismsRestrictScalars πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesMonomorphisms
ModuleCat
moduleCategory
restrictScalars
β€”mono_iff_injective
instReflectsIsomorphismsRestrictScalars πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsIsomorphisms
ModuleCat
moduleCategory
restrictScalars
β€”instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.reflectsIsomorphisms_of_comp
preservesColimit_restrictScalars πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimit
ModuleCat
moduleCategory
restrictScalars
β€”CategoryTheory.Limits.preservesColimit_of_preserves_colimit_cocone
HasColimit.instPreservesColimitAddCommGrpCatForgetβ‚‚LinearMapIdCarrierAddMonoidHomCarrier
HasColimit.reflectsColimit
preservesLimit_restrictScalars πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
ModuleCat
moduleCategory
restrictScalars
β€”forgetβ‚‚AddCommGroup_preservesLimit
forgetβ‚‚AddCommGroup_reflectsLimit
restrictScalarsComp'App_hom_apply πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
Ring.toSemiring
DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
moduleCategory
restrictScalars
carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.hom
restrictScalarsComp'App
β€”β€”
restrictScalarsComp'App_hom_naturality πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
Ring.toSemiring
CategoryTheory.CategoryStruct.comp
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
CategoryTheory.Functor.obj
restrictScalars
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
restrictScalarsComp'App
β€”CategoryTheory.NatTrans.naturality
restrictScalarsComp'App_hom_naturality_assoc πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
Ring.toSemiring
CategoryTheory.CategoryStruct.comp
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
CategoryTheory.Functor.obj
restrictScalars
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
restrictScalarsComp'App
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictScalarsComp'App_hom_naturality
restrictScalarsComp'App_inv_apply πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
Ring.toSemiring
DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
moduleCategory
restrictScalars
carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.inv
restrictScalarsComp'App
β€”β€”
restrictScalarsComp'App_inv_naturality πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
Ring.toSemiring
CategoryTheory.CategoryStruct.comp
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
CategoryTheory.Functor.obj
restrictScalars
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
restrictScalarsComp'App
β€”CategoryTheory.NatTrans.naturality
restrictScalarsComp'App_inv_naturality_assoc πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
Ring.toSemiring
CategoryTheory.CategoryStruct.comp
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
CategoryTheory.Functor.obj
restrictScalars
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
restrictScalarsComp'App
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictScalarsComp'App_inv_naturality
restrictScalarsComp'_hom_app πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
Ring.toSemiring
CategoryTheory.NatTrans.app
ModuleCat
moduleCategory
restrictScalars
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
restrictScalarsComp'
CategoryTheory.Functor.obj
restrictScalarsComp'App
β€”β€”
restrictScalarsComp'_inv_app πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
Ring.toSemiring
CategoryTheory.NatTrans.app
ModuleCat
moduleCategory
CategoryTheory.Functor.comp
restrictScalars
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
restrictScalarsComp'
CategoryTheory.Functor.obj
restrictScalarsComp'App
β€”β€”
restrictScalarsCongr_hom_app πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
moduleCategory
restrictScalars
carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
restrictScalarsCongr
β€”β€”
restrictScalarsCongr_inv_app πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
moduleCategory
restrictScalars
carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
restrictScalarsCongr
β€”β€”
restrictScalarsCongr_symm πŸ“–mathematicalβ€”CategoryTheory.Iso.symm
CategoryTheory.Functor
ModuleCat
moduleCategory
CategoryTheory.Functor.category
restrictScalars
restrictScalarsCongr
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
β€”β€”
restrictScalarsEquivalenceOfRingEquiv_additive πŸ“–mathematicalβ€”CategoryTheory.Functor.Additive
ModuleCat
moduleCategory
instPreadditive
CategoryTheory.Equivalence.functor
restrictScalarsEquivalenceOfRingEquiv
β€”β€”
restrictScalarsId'App_hom_apply πŸ“–mathematicalRingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
moduleCategory
restrictScalars
carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.hom
restrictScalarsId'App
β€”β€”
restrictScalarsId'App_hom_naturality πŸ“–mathematicalRingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
CategoryTheory.CategoryStruct.comp
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
CategoryTheory.Functor.obj
restrictScalars
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
restrictScalarsId'App
β€”CategoryTheory.NatTrans.naturality
restrictScalarsId'App_hom_naturality_assoc πŸ“–mathematicalRingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
CategoryTheory.CategoryStruct.comp
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
CategoryTheory.Functor.obj
restrictScalars
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
restrictScalarsId'App
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictScalarsId'App_hom_naturality
restrictScalarsId'App_inv_apply πŸ“–mathematicalRingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
moduleCategory
restrictScalars
carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.inv
restrictScalarsId'App
β€”β€”
restrictScalarsId'App_inv_naturality πŸ“–mathematicalRingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
CategoryTheory.CategoryStruct.comp
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
CategoryTheory.Functor.obj
restrictScalars
CategoryTheory.Iso.inv
restrictScalarsId'App
CategoryTheory.Functor.map
β€”CategoryTheory.NatTrans.naturality
restrictScalarsId'App_inv_naturality_assoc πŸ“–mathematicalRingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
CategoryTheory.CategoryStruct.comp
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
CategoryTheory.Functor.obj
restrictScalars
CategoryTheory.Iso.inv
restrictScalarsId'App
CategoryTheory.Functor.map
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictScalarsId'App_inv_naturality
restrictScalarsId'_hom_app πŸ“–mathematicalRingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
CategoryTheory.NatTrans.app
ModuleCat
moduleCategory
restrictScalars
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
restrictScalarsId'
CategoryTheory.Functor.obj
restrictScalarsId'App
β€”β€”
restrictScalarsId'_inv_app πŸ“–mathematicalRingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
CategoryTheory.NatTrans.app
ModuleCat
moduleCategory
CategoryTheory.Functor.id
restrictScalars
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
restrictScalarsId'
CategoryTheory.Functor.obj
restrictScalarsId'App
β€”β€”
restrictScalars_isEquivalence_of_ringEquiv πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
ModuleCat
moduleCategory
restrictScalars
RingEquiv.toRingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
β€”CategoryTheory.Equivalence.isEquivalence_functor
sMulCommClass_mk πŸ“–mathematicalβ€”SMulCommClass
SemigroupAction.toSMul
carrier
RestrictScalars.obj'
CommRing.toRing
of
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
isAddCommGroup
Module.toDistribMulAction
isModule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”mul_comm
semilinearMapAddEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
LinearMap
Ring.toSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
CategoryTheory.Functor.obj
restrictScalars
LinearMap.instAdd
instAddHom
EquivLike.toFunLike
AddEquiv.instEquivLike
semilinearMapAddEquiv
ofHom
Module.compHom
RingHom.id
Semiring.toNonAssocSemiring
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearMap.instFunLike
β€”β€”
semilinearMapAddEquiv_symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
AddEquiv
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
CategoryTheory.Functor.obj
restrictScalars
instAddHom
LinearMap.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
semilinearMapAddEquiv
CategoryTheory.ConcreteCategory.hom
RingHom.id
Semiring.toNonAssocSemiring
instConcreteCategoryLinearMapIdCarrier
β€”β€”

ModuleCat.Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
instLinearRestrictScalars πŸ“–mathematicalβ€”CategoryTheory.Functor.Linear
CommSemiring.toSemiring
ModuleCat
ModuleCat.moduleCategory
ModuleCat.instPreadditive
instLinear
ModuleCat.restrictScalars
AlgHom.toRingHom
Ring.toSemiring
β€”ModuleCat.hom_ext
LinearMap.ext
AlgHom.commutes
restrictScalarsEquivalenceOfRingEquiv_linear πŸ“–mathematicalβ€”CategoryTheory.Functor.Linear
CommSemiring.toSemiring
ModuleCat
ModuleCat.moduleCategory
ModuleCat.instPreadditive
instLinear
CategoryTheory.Equivalence.functor
ModuleCat.restrictScalarsEquivalenceOfRingEquiv
AlgEquiv.toRingEquiv
Ring.toSemiring
β€”instLinearRestrictScalars

ModuleCat.CoextendScalars

Definitions

NameCategoryTheorems
distribMulAction πŸ“–CompOpβ€”
hasSMul πŸ“–CompOp
1 mathmath: smul_apply'
instCoeFunCarrierObj'Forall πŸ“–CompOpβ€”
instCoeFunCarrierObjCoextendScalarsForall πŸ“–CompOpβ€”
isModule πŸ“–CompOp
2 mathmath: ModuleCat.RestrictionCoextensionAdj.unit'_app, map'_hom_apply_apply
map' πŸ“–CompOp
1 mathmath: map'_hom_apply_apply
mulAction πŸ“–CompOpβ€”
obj' πŸ“–CompOp
1 mathmath: map'_hom_apply_apply

Theorems

NameKindAssumesProvesValidatesDepends On
map'_hom_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
LinearMap.addCommGroup
isModule
ModuleCat.Hom.hom
obj'
map'
β€”β€”
map_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.coextendScalars
CategoryTheory.ConcreteCategory.hom
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Functor.map
β€”β€”
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.coextendScalars
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
smul_apply' πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
hasSMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”

ModuleCat.ExtendRestrictScalarsAdj

Definitions

NameCategoryTheorems
counit πŸ“–CompOp
1 mathmath: counit_app
homEquiv πŸ“–CompOp
1 mathmath: homEquiv_symm_apply
unit πŸ“–CompOp
1 mathmath: unit_app

Theorems

NameKindAssumesProvesValidatesDepends On
counit_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.comp
ModuleCat.restrictScalars
ModuleCat.extendScalars
CategoryTheory.Functor.id
counit
Counit.map
β€”β€”
homEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
ModuleCat
CommRing.toRing
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
ModuleCat.restrictScalars
ModuleCat.extendScalars
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
HomEquiv.fromExtendScalars
β€”β€”
unit_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
ModuleCat.extendScalars
ModuleCat.restrictScalars
unit
Unit.map
CategoryTheory.Functor.obj
β€”β€”

ModuleCat.ExtendRestrictScalarsAdj.Counit

Definitions

NameCategoryTheorems
map πŸ“–CompOp
2 mathmath: map_hom_apply, ModuleCat.ExtendRestrictScalarsAdj.counit_app

Theorems

NameKindAssumesProvesValidatesDepends On
map_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
CommRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
TensorProduct.addCommGroup
TensorProduct.leftModule
ModuleCat.instModuleCarrierObjRestrictScalars
LinearMap.instFunLike
ModuleCat.Hom.hom
CategoryTheory.Functor.comp
ModuleCat.extendScalars
map
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.lift
LinearMap.addCommMonoid
LinearMap.module
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”

ModuleCat.ExtendRestrictScalarsAdj.HomEquiv

Definitions

NameCategoryTheorems
evalAt πŸ“–CompOp
2 mathmath: fromExtendScalars_hom_apply, evalAt_apply
fromExtendScalars πŸ“–CompOp
2 mathmath: fromExtendScalars_hom_apply, ModuleCat.ExtendRestrictScalarsAdj.homEquiv_symm_apply
toRestrictScalars πŸ“–CompOp
1 mathmath: toRestrictScalars_hom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
evalAt_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
Module.compHom
LinearMap.instFunLike
evalAt
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
ModuleCat.instModuleCarrierObjRestrictScalars
CategoryTheory.ConcreteCategory.hom
Ring.toSemiring
ModuleCat.instConcreteCategoryLinearMapIdCarrier
β€”β€”
fromExtendScalars_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
CommRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
TensorProduct.addCommGroup
TensorProduct.leftModule
ModuleCat.instModuleCarrierObjRestrictScalars
LinearMap.instFunLike
ModuleCat.Hom.hom
ModuleCat.extendScalars
fromExtendScalars
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
Module.compHom
TensorProduct.lift
LinearMap.addCommMonoid
LinearMap.module
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
evalAt
β€”β€”
toRestrictScalars_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
CommRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
Module.compHom
LinearMap.instFunLike
ModuleCat.Hom.hom
toRestrictScalars
ModuleCat.extendScalars
CategoryTheory.ConcreteCategory.hom
ModuleCat.instConcreteCategoryLinearMapIdCarrier
TensorProduct.tmul
CommRing.toCommSemiring
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”

ModuleCat.ExtendRestrictScalarsAdj.Unit

Definitions

NameCategoryTheorems
map πŸ“–CompOp
1 mathmath: ModuleCat.ExtendRestrictScalarsAdj.unit_app

ModuleCat.ExtendScalars

Definitions

NameCategoryTheorems
map' πŸ“–CompOp
2 mathmath: map'_id, map'_comp
obj' πŸ“–CompOp
3 mathmath: map'_id, map'_comp, ModuleCat.homEquiv_extendScalarsComp

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext πŸ“–β€”DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
ModuleCat.extendScalars
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
TensorProduct.tmul
CommRing.toCommSemiring
ModuleCat.restrictScalars
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”CategoryTheory.Functor.map_injective
ModuleCat.instFaithfulRestrictScalars
ModuleCat.hom_ext
TensorProduct.ext'
Algebra.to_smulCommClass
smul_tmul
mul_one
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
hom_ext_iff πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
ModuleCat.extendScalars
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
TensorProduct.tmul
CommRing.toCommSemiring
ModuleCat.restrictScalars
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”hom_ext
map'_comp πŸ“–mathematicalβ€”map'
CategoryTheory.CategoryStruct.comp
ModuleCat
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
obj'
β€”ModuleCat.hom_ext
LinearMap.ext
TensorProduct.induction_on
map'_id πŸ“–mathematicalβ€”map'
CategoryTheory.CategoryStruct.id
ModuleCat
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
obj'
β€”Algebra.to_smulCommClass
LinearMap.baseChange_id
map_tmul πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
ModuleCat.extendScalars
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Functor.map
TensorProduct.tmul
CommRing.toCommSemiring
ModuleCat.restrictScalars
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
Module.compHom
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”
smul_tmul πŸ“–mathematicalβ€”TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
CommRing.toRing
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
Module.compHom
CommSemiring.toSemiring
ModuleCat.isModule
TensorProduct.leftHasSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
ModuleCat.instModuleCarrierObjRestrictScalars
TensorProduct.tmul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”

ModuleCat.RestrictScalars

Definitions

NameCategoryTheorems
map' πŸ“–CompOpβ€”
obj' πŸ“–CompOp
1 mathmath: ModuleCat.sMulCommClass_mk

ModuleCat.RestrictionCoextensionAdj

Definitions

NameCategoryTheorems
app' πŸ“–CompOp
1 mathmath: unit'_app
counit' πŸ“–CompOp
1 mathmath: counit'_app
unit' πŸ“–CompOp
1 mathmath: unit'_app

Theorems

NameKindAssumesProvesValidatesDepends On
counit'_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.comp
ModuleCat.coextendScalars
ModuleCat.restrictScalars
CategoryTheory.Functor.id
counit'
ModuleCat.ofHom
ModuleCat.carrier
CategoryTheory.Functor.obj
ModuleCat.isAddCommGroup
Module.compHom
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
RingHom.id
Semiring.toNonAssocSemiring
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddHom.toFun
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
LinearMap.toAddHom
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
unit'_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
ModuleCat.restrictScalars
ModuleCat.coextendScalars
unit'
ModuleCat.ofHom
ModuleCat.carrier
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
CategoryTheory.Functor.obj
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.addCommGroup
ModuleCat.CoextendScalars.isModule
app'
β€”β€”

ModuleCat.RestrictionCoextensionAdj.HomEquiv

Definitions

NameCategoryTheorems
fromRestriction πŸ“–CompOp
1 mathmath: fromRestriction_hom_apply_apply
toRestriction πŸ“–CompOp
1 mathmath: toRestriction_hom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
fromRestriction_hom_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.coextendScalars
ModuleCat.Hom.hom
fromRestriction
CategoryTheory.ConcreteCategory.hom
ModuleCat.instConcreteCategoryLinearMapIdCarrier
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”
toRestriction_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.Hom.hom
toRestriction
ModuleCat.of
Ring.toAddCommGroup
Semiring.toModule
ModuleCat.coextendScalars
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”

ModuleCat.restrictScalars

Theorems

NameKindAssumesProvesValidatesDepends On
map_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Functor.map
β€”β€”
smul_def πŸ“–mathematicalβ€”ModuleCat.carrier
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
ModuleCat.isAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”β€”
smul_def' πŸ“–mathematicalβ€”ModuleCat.carrier
CategoryTheory.Functor.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
ModuleCat.isAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”β€”

---

← Back to Index