Documentation

Mathlib.Algebra.Category.ModuleCat.ChangeOfRings

Change Of Rings #

Main definitions #

Main results #

Notation #

Let R, S be rings and f : R →+* S

noncomputable def ModuleCat.RestrictScalars.obj' {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : ModuleCat S) :

Any S-module M is also an R-module via a ring homomorphism f : R ⟶ S by defining r • m := f r • m (Module.compHom). This is called restriction of scalars.

Equations
    Instances For
      noncomputable def ModuleCat.RestrictScalars.map' {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) {M M' : ModuleCat S} (g : M M') :
      obj' f M obj' f M'

      Given an S-linear map g : M → M' between S-modules, g is also R-linear between M and M' by means of restriction of scalars.

      Equations
        Instances For
          noncomputable def ModuleCat.restrictScalars {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) :

          The restriction of scalars operation is functorial. For any f : R →+* S a ring homomorphism,

          • an S-module M can be considered as R-module by r • m = f r • m
          • an S-linear map is also R-linear
          Equations
            Instances For
              noncomputable instance ModuleCat.instModuleCarrierObjRestrictScalars {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] {f : R →+* S} {M : ModuleCat S} :
              Equations
                @[simp]
                theorem ModuleCat.restrictScalars.map_apply {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) {M M' : ModuleCat S} (g : M M') (x : ((restrictScalars f).obj M)) :
                @[simp]
                theorem ModuleCat.restrictScalars.smul_def {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) {M : ModuleCat S} (r : R) (m : ((restrictScalars f).obj M)) :
                r m = f r have this := m; this
                theorem ModuleCat.restrictScalars.smul_def' {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) {M : ModuleCat S} (r : R) (m : M) :
                (r have this := m; this) = f r m
                @[instance 100]
                instance ModuleCat.sMulCommClass_mk {R : Type u₁} {S : Type u₂} [Ring R] [CommRing S] (f : R →+* S) (M : Type v) [I : AddCommGroup M] [Module S M] :
                noncomputable def ModuleCat.semilinearMapAddEquiv {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : ModuleCat R) (N : ModuleCat S) :
                (M →ₛₗ[f] N) ≃+ (M (restrictScalars f).obj N)

                Semilinear maps M →ₛₗ[f] N identify to morphisms M ⟶ (ModuleCat.restrictScalars f).obj N.

                Equations
                  Instances For
                    @[simp]
                    theorem ModuleCat.semilinearMapAddEquiv_symm_apply_apply {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : ModuleCat R) (N : ModuleCat S) (g : M (restrictScalars f).obj N) (a : M) :
                    @[simp]
                    theorem ModuleCat.semilinearMapAddEquiv_apply {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : ModuleCat R) (N : ModuleCat S) (g : M →ₛₗ[f] N) :
                    (semilinearMapAddEquiv f M N) g = ofHom { toFun := g, map_add' := , map_smul' := }
                    noncomputable def ModuleCat.restrictScalarsCongr {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] {f g : R →+* S} (e : f = g) :

                    Restrictions scalars along equal ring homomorphisms are naturally isomorphic.

                    Equations
                      Instances For
                        @[simp]
                        theorem ModuleCat.restrictScalarsCongr_symm {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] {f g : R →+* S} (e : f = g) :
                        @[simp]
                        theorem ModuleCat.restrictScalarsCongr_hom_app {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] {f g : R →+* S} (e : f = g) (M : ModuleCat S) (x : M) :
                        @[simp]
                        theorem ModuleCat.restrictScalarsCongr_inv_app {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] {f g : R →+* S} (e : f = g) (M : ModuleCat S) (x : M) :
                        noncomputable def ModuleCat.restrictScalarsId'App {R : Type u₁} [Ring R] (f : R →+* R) (hf : f = RingHom.id R) (M : ModuleCat R) :

                        For an R-module M, the restriction of scalars of M by the identity morphism identifies to M.

                        Equations
                          Instances For
                            noncomputable def ModuleCat.restrictScalarsId' {R : Type u₁} [Ring R] (f : R →+* R) (hf : f = RingHom.id R) :

                            The restriction of scalars by a ring morphism that is the identity identifies to the identity functor.

                            Equations
                              Instances For
                                @[simp]
                                theorem ModuleCat.restrictScalarsId'_hom_app {R : Type u₁} [Ring R] (f : R →+* R) (hf : f = RingHom.id R) (X : ModuleCat R) :
                                @[simp]
                                theorem ModuleCat.restrictScalarsId'_inv_app {R : Type u₁} [Ring R] (f : R →+* R) (hf : f = RingHom.id R) (X : ModuleCat R) :
                                @[reducible, inline]

                                The restriction of scalars by the identity morphism identifies to the identity functor.

                                Equations
                                  Instances For
                                    noncomputable def ModuleCat.restrictScalarsComp'App {R₁ : Type u₁} {R₂ : Type u₂} {R₃ : Type u₃} [Ring R₁] [Ring R₂] [Ring R₃] (f : R₁ →+* R₂) (g : R₂ →+* R₃) (gf : R₁ →+* R₃) (hgf : gf = g.comp f) (M : ModuleCat R₃) :

                                    For each R₃-module M, restriction of scalars of M by a composition of ring morphisms identifies to successively restricting scalars.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem ModuleCat.restrictScalarsComp'App_hom_apply {R₁ : Type u₁} {R₂ : Type u₂} {R₃ : Type u₃} [Ring R₁] [Ring R₂] [Ring R₃] (f : R₁ →+* R₂) (g : R₂ →+* R₃) (gf : R₁ →+* R₃) (hgf : gf = g.comp f) (M : ModuleCat R₃) (x : M) :
                                        @[simp]
                                        theorem ModuleCat.restrictScalarsComp'App_inv_apply {R₁ : Type u₁} {R₂ : Type u₂} {R₃ : Type u₃} [Ring R₁] [Ring R₂] [Ring R₃] (f : R₁ →+* R₂) (g : R₂ →+* R₃) (gf : R₁ →+* R₃) (hgf : gf = g.comp f) (M : ModuleCat R₃) (x : M) :
                                        noncomputable def ModuleCat.restrictScalarsComp' {R₁ : Type u₁} {R₂ : Type u₂} {R₃ : Type u₃} [Ring R₁] [Ring R₂] [Ring R₃] (f : R₁ →+* R₂) (g : R₂ →+* R₃) (gf : R₁ →+* R₃) (hgf : gf = g.comp f) :

                                        The restriction of scalars by a composition of ring morphisms identifies to the composition of the restriction of scalars functors.

                                        Equations
                                          Instances For
                                            @[simp]
                                            theorem ModuleCat.restrictScalarsComp'_inv_app {R₁ : Type u₁} {R₂ : Type u₂} {R₃ : Type u₃} [Ring R₁] [Ring R₂] [Ring R₃] (f : R₁ →+* R₂) (g : R₂ →+* R₃) (gf : R₁ →+* R₃) (hgf : gf = g.comp f) (X : ModuleCat R₃) :
                                            @[simp]
                                            theorem ModuleCat.restrictScalarsComp'_hom_app {R₁ : Type u₁} {R₂ : Type u₂} {R₃ : Type u₃} [Ring R₁] [Ring R₂] [Ring R₃] (f : R₁ →+* R₂) (g : R₂ →+* R₃) (gf : R₁ →+* R₃) (hgf : gf = g.comp f) (X : ModuleCat R₃) :
                                            theorem ModuleCat.restrictScalarsComp'App_hom_naturality {R₁ : Type u₁} {R₂ : Type u₂} {R₃ : Type u₃} [Ring R₁] [Ring R₂] [Ring R₃] (f : R₁ →+* R₂) (g : R₂ →+* R₃) (gf : R₁ →+* R₃) (hgf : gf = g.comp f) {M N : ModuleCat R₃} (φ : M N) :
                                            theorem ModuleCat.restrictScalarsComp'App_hom_naturality_assoc {R₁ : Type u₁} {R₂ : Type u₂} {R₃ : Type u₃} [Ring R₁] [Ring R₂] [Ring R₃] (f : R₁ →+* R₂) (g : R₂ →+* R₃) (gf : R₁ →+* R₃) (hgf : gf = g.comp f) {M N : ModuleCat R₃} (φ : M N) {Z : ModuleCat R₁} (h : (restrictScalars f).obj ((restrictScalars g).obj N) Z) :
                                            theorem ModuleCat.restrictScalarsComp'App_inv_naturality {R₁ : Type u₁} {R₂ : Type u₂} {R₃ : Type u₃} [Ring R₁] [Ring R₂] [Ring R₃] (f : R₁ →+* R₂) (g : R₂ →+* R₃) (gf : R₁ →+* R₃) (hgf : gf = g.comp f) {M N : ModuleCat R₃} (φ : M N) :
                                            theorem ModuleCat.restrictScalarsComp'App_inv_naturality_assoc {R₁ : Type u₁} {R₂ : Type u₂} {R₃ : Type u₃} [Ring R₁] [Ring R₂] [Ring R₃] (f : R₁ →+* R₂) (g : R₂ →+* R₃) (gf : R₁ →+* R₃) (hgf : gf = g.comp f) {M N : ModuleCat R₃} (φ : M N) {Z : ModuleCat R₁} (h : (restrictScalars gf).obj N Z) :
                                            @[reducible, inline]
                                            noncomputable abbrev ModuleCat.restrictScalarsComp {R₁ : Type u₁} {R₂ : Type u₂} {R₃ : Type u₃} [Ring R₁] [Ring R₂] [Ring R₃] (f : R₁ →+* R₂) (g : R₂ →+* R₃) :

                                            The restriction of scalars by a composition of ring morphisms identifies to the composition of the restriction of scalars functors.

                                            Equations
                                              Instances For
                                                noncomputable def ModuleCat.restrictScalarsEquivalenceOfRingEquiv {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] (e : R ≃+* S) :

                                                The equivalence of categories ModuleCat S ≌ ModuleCat R induced by e : R ≃+* S.

                                                Equations
                                                  Instances For
                                                    instance ModuleCat.Algebra.instLinearRestrictScalars {R₀ : Type u_1} {R : Type u_2} {S : Type u_3} [CommSemiring R₀] [Ring R] [Ring S] [Algebra R₀ R] [Algebra R₀ S] (f : R →ₐ[R₀] S) :

                                                    Tensor product of elements along a base change.

                                                    This notation is necessary because we need to reason about s ⊗ₜ m where s : S and m : M; without this notation, one needs to work with s : (restrictScalars f).obj ⟨S⟩.

                                                    Equations
                                                      Instances For
                                                        noncomputable def ModuleCat.ExtendScalars.obj' {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) (M : ModuleCat R) :

                                                        Extension of scalars turns an R-module into an S-module by M ↦ S ⨂ M

                                                        Equations
                                                          Instances For
                                                            noncomputable def ModuleCat.ExtendScalars.map' {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {M1 M2 : ModuleCat R} (l : M1 M2) :
                                                            obj' f M1 obj' f M2

                                                            Extension of scalars is a functor where an R-module M is sent to S ⊗ M and l : M1 ⟶ M2 is sent to s ⊗ m ↦ s ⊗ l m

                                                            Equations
                                                              Instances For
                                                                theorem ModuleCat.ExtendScalars.map'_comp {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {M₁ M₂ M₃ : ModuleCat R} (l₁₂ : M₁ M₂) (l₂₃ : M₂ M₃) :
                                                                noncomputable def ModuleCat.extendScalars {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) :

                                                                Extension of scalars is a functor where an R-module M is sent to S ⊗ M and l : M1 ⟶ M2 is sent to s ⊗ m ↦ s ⊗ l m

                                                                Equations
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem ModuleCat.ExtendScalars.smul_tmul {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {M : ModuleCat R} (s s' : S) (m : M) :
                                                                    s s' ⊗ₜ[R] m = (s * s') ⊗ₜ[R] m
                                                                    @[simp]
                                                                    theorem ModuleCat.ExtendScalars.map_tmul {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {M M' : ModuleCat R} (g : M M') (s : S) (m : M) :
                                                                    theorem ModuleCat.ExtendScalars.hom_ext {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] {f : R →+* S} {M : ModuleCat R} {N : ModuleCat S} {α β : (extendScalars f).obj M N} (h : ∀ (m : M), (CategoryTheory.ConcreteCategory.hom α) (1 ⊗ₜ[R] m) = (CategoryTheory.ConcreteCategory.hom β) (1 ⊗ₜ[R] m)) :
                                                                    α = β
                                                                    theorem ModuleCat.ExtendScalars.hom_ext_iff {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] {f : R →+* S} {M : ModuleCat R} {N : ModuleCat S} {α β : (extendScalars f).obj M N} :
                                                                    noncomputable instance ModuleCat.CoextendScalars.hasSMul {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : Type v) [AddCommMonoid M] [Module R M] :
                                                                    SMul S (((restrictScalars f).obj (of S S)) →ₗ[R] M)

                                                                    Given an R-module M, consider Hom(S, M) -- the R-linear maps between S (as an R-module by means of restriction of scalars) and M. S acts on Hom(S, M) by s • g = x ↦ g (x • s)

                                                                    Equations
                                                                      @[simp]
                                                                      theorem ModuleCat.CoextendScalars.smul_apply' {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : Type v) [AddCommMonoid M] [Module R M] (s : S) (g : ((restrictScalars f).obj (of S S)) →ₗ[R] M) (s' : S) :
                                                                      (s g) s' = g (s' * s)
                                                                      noncomputable instance ModuleCat.CoextendScalars.mulAction {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : Type v) [AddCommMonoid M] [Module R M] :
                                                                      MulAction S (((restrictScalars f).obj (of S S)) →ₗ[R] M)
                                                                      Equations
                                                                        noncomputable instance ModuleCat.CoextendScalars.distribMulAction {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : Type v) [AddCommMonoid M] [Module R M] :
                                                                        Equations
                                                                          noncomputable instance ModuleCat.CoextendScalars.isModule {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : Type v) [AddCommMonoid M] [Module R M] :
                                                                          Module S (((restrictScalars f).obj (of S S)) →ₗ[R] M)

                                                                          S acts on Hom(S, M) by s • g = x ↦ g (x • s), this action defines an S-module structure on Hom(S, M).

                                                                          Equations
                                                                            noncomputable def ModuleCat.CoextendScalars.obj' {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : ModuleCat R) :

                                                                            If M is an R-module, then the set of R-linear maps S →ₗ[R] M is an S-module with scalar multiplication defined by s • l := x ↦ l (x • s)

                                                                            Equations
                                                                              Instances For
                                                                                noncomputable instance ModuleCat.CoextendScalars.instCoeFunCarrierObj'Forall {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : ModuleCat R) :
                                                                                CoeFun (obj' f M) fun (x : (obj' f M)) => SM
                                                                                Equations
                                                                                  noncomputable def ModuleCat.CoextendScalars.map' {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) {M M' : ModuleCat R} (g : M M') :
                                                                                  obj' f M obj' f M'

                                                                                  If M, M' are R-modules, then any R-linear map g : M ⟶ M' induces an S-linear map (S →ₗ[R] M) ⟶ (S →ₗ[R] M') defined by h ↦ g ∘ h

                                                                                  Equations
                                                                                    Instances For
                                                                                      @[simp]
                                                                                      theorem ModuleCat.CoextendScalars.map'_hom_apply_apply {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) {M M' : ModuleCat R} (g : M M') (h : ((restrictScalars f).obj (of S S)) →ₗ[R] M) (a✝ : ((restrictScalars f).obj (of S S))) :
                                                                                      ((Hom.hom (map' f g)) h) a✝ = (Hom.hom g) (h a✝)
                                                                                      noncomputable def ModuleCat.coextendScalars {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) :

                                                                                      For any rings R, S and a ring homomorphism f : R →+* S, there is a functor from R-module to S-module defined by M ↦ (S →ₗ[R] M) where S is considered as an R-module via restriction of scalars and g : M ⟶ M' is sent to h ↦ g ∘ h.

                                                                                      Equations
                                                                                        Instances For
                                                                                          noncomputable instance ModuleCat.CoextendScalars.instCoeFunCarrierObjCoextendScalarsForall {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : ModuleCat R) :
                                                                                          CoeFun ((coextendScalars f).obj M) fun (x : ((coextendScalars f).obj M)) => SM
                                                                                          Equations
                                                                                            theorem ModuleCat.CoextendScalars.smul_apply {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (M : ModuleCat R) (g : ((coextendScalars f).obj M)) (s s' : S) :
                                                                                            (s g) s' = g (s' * s)
                                                                                            @[simp]
                                                                                            theorem ModuleCat.CoextendScalars.map_apply {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) {M M' : ModuleCat R} (g : M M') (x : ((coextendScalars f).obj M)) (s : S) :
                                                                                            noncomputable def ModuleCat.RestrictionCoextensionAdj.HomEquiv.fromRestriction {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) {X : ModuleCat R} {Y : ModuleCat S} (g : (restrictScalars f).obj Y X) :

                                                                                            Given R-module X and S-module Y, any g : (restrictScalars f).obj Y ⟶ X corresponds to Y ⟶ (coextendScalars f).obj X by sending y ↦ (s ↦ g (s • y))

                                                                                            Equations
                                                                                              Instances For
                                                                                                @[simp]
                                                                                                theorem ModuleCat.RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) {X : ModuleCat R} {Y : ModuleCat S} (g : (restrictScalars f).obj Y X) (y : Y) (s : S) :

                                                                                                This should be autogenerated by @[simps] but we need to give s the correct type here.

                                                                                                noncomputable def ModuleCat.RestrictionCoextensionAdj.HomEquiv.toRestriction {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) {X : ModuleCat R} {Y : ModuleCat S} (g : Y (coextendScalars f).obj X) :

                                                                                                Given R-module X and S-module Y, any g : Y ⟶ (coextendScalars f).obj X corresponds to (restrictScalars f).obj Y ⟶ X by y ↦ g y 1

                                                                                                Equations
                                                                                                  Instances For
                                                                                                    @[simp]
                                                                                                    theorem ModuleCat.RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) {X : ModuleCat R} {Y : ModuleCat S} (g : Y (coextendScalars f).obj X) (y : ((restrictScalars f).obj Y)) :
                                                                                                    (Hom.hom (toRestriction f g)) y = ((Hom.hom g) y) 1

                                                                                                    This should be autogenerated by @[simps] but we need to give 1 the correct type here.

                                                                                                    noncomputable def ModuleCat.RestrictionCoextensionAdj.app' {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (Y : ModuleCat S) :

                                                                                                    Auxiliary definition for unit', to address timeouts.

                                                                                                    Equations
                                                                                                      Instances For

                                                                                                        The natural transformation from identity functor to the composition of restriction and coextension of scalars.

                                                                                                        Equations
                                                                                                          Instances For

                                                                                                            The natural transformation from the composition of coextension and restriction of scalars to identity functor.

                                                                                                            Equations
                                                                                                              Instances For
                                                                                                                @[simp]
                                                                                                                theorem ModuleCat.RestrictionCoextensionAdj.counit'_app {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) (X : ModuleCat R) :
                                                                                                                (RestrictionCoextensionAdj.counit' f).app X = ofHom { toFun := fun (g : ((restrictScalars f).obj ((coextendScalars f).obj X))) => g.toFun 1, map_add' := , map_smul' := }
                                                                                                                noncomputable def ModuleCat.restrictCoextendScalarsAdj {R : Type u₁} {S : Type u₂} [Ring R] [Ring S] (f : R →+* S) :

                                                                                                                Restriction of scalars is left adjoint to coextension of scalars.

                                                                                                                Equations
                                                                                                                  Instances For
                                                                                                                    noncomputable def ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {X : ModuleCat R} {Y : ModuleCat S} (g : (extendScalars f).obj X Y) :

                                                                                                                    Given R-module X and S-module Y and a map g : (extendScalars f).obj X ⟶ Y, i.e. S-linear map S ⨂ X → Y, there is a X ⟶ (restrictScalars f).obj Y, i.e. R-linear map X ⟶ Y by x ↦ g (1 ⊗ x).

                                                                                                                    Equations
                                                                                                                      Instances For
                                                                                                                        noncomputable def ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.evalAt {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {X : ModuleCat R} {Y : ModuleCat S} (s : S) (g : X (restrictScalars f).obj Y) :
                                                                                                                        have this := Module.compHom (↑Y) f; X →ₗ[R] Y

                                                                                                                        The map S → X →ₗ[R] Y given by fun s x => s • (g x)

                                                                                                                        Equations
                                                                                                                          Instances For
                                                                                                                            @[simp]
                                                                                                                            theorem ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {X : ModuleCat R} {Y : ModuleCat S} (s : S) (g : X (restrictScalars f).obj Y) (x : X) :
                                                                                                                            noncomputable def ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {X : ModuleCat R} {Y : ModuleCat S} (g : X (restrictScalars f).obj Y) :

                                                                                                                            Given R-module X and S-module Y and a map X ⟶ (restrictScalars f).obj Y, i.e R-linear map X ⟶ Y, there is a map (extend_scalars f).obj X ⟶ Y, i.e S-linear map S ⨂ X → Y by s ⊗ x ↦ s • g x.

                                                                                                                            Equations
                                                                                                                              Instances For
                                                                                                                                @[simp]
                                                                                                                                theorem ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {X : ModuleCat R} {Y : ModuleCat S} (g : X (restrictScalars f).obj Y) (z : TensorProduct R ((restrictScalars f).obj (of S S)) X) :
                                                                                                                                (Hom.hom (fromExtendScalars f g)) z = (TensorProduct.lift { toFun := fun (s : ((restrictScalars f).obj (of S S))) => evalAt f s g, map_add' := , map_smul' := }) z
                                                                                                                                noncomputable def ModuleCat.ExtendRestrictScalarsAdj.homEquiv {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {X : ModuleCat R} {Y : ModuleCat S} :

                                                                                                                                Given R-module X and S-module Y, S-linear maps (extendScalars f).obj X ⟶ Y bijectively correspond to R-linear maps X ⟶ (restrictScalars f).obj Y.

                                                                                                                                Equations
                                                                                                                                  Instances For
                                                                                                                                    noncomputable def ModuleCat.ExtendRestrictScalarsAdj.Unit.map {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {X : ModuleCat R} :

                                                                                                                                    For any R-module X, there is a natural R-linear map from X to X ⨂ S by sending x ↦ x ⊗ 1

                                                                                                                                    Equations
                                                                                                                                      Instances For

                                                                                                                                        The natural transformation from identity functor on R-module to the composition of extension and restriction of scalars.

                                                                                                                                        Equations
                                                                                                                                          Instances For
                                                                                                                                            @[simp]
                                                                                                                                            theorem ModuleCat.ExtendRestrictScalarsAdj.unit_app {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) (x✝ : ModuleCat R) :
                                                                                                                                            (unit f).app x✝ = Unit.map f
                                                                                                                                            noncomputable def ModuleCat.ExtendRestrictScalarsAdj.Counit.map {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {Y : ModuleCat S} :

                                                                                                                                            For any S-module Y, there is a natural R-linear map from S ⨂ Y to Y by s ⊗ y ↦ s • y

                                                                                                                                            Equations
                                                                                                                                              Instances For
                                                                                                                                                @[simp]
                                                                                                                                                theorem ModuleCat.ExtendRestrictScalarsAdj.Counit.map_hom_apply {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) {Y : ModuleCat S} (a : TensorProduct R S Y) :
                                                                                                                                                (Hom.hom (map f)) a = (TensorProduct.lift { toFun := fun (s : S) => { toFun := fun (y : Y) => s y, map_add' := , map_smul' := }, map_add' := , map_smul' := }) a

                                                                                                                                                The natural transformation from the composition of restriction and extension of scalars to the identity functor on S-module.

                                                                                                                                                Equations
                                                                                                                                                  Instances For
                                                                                                                                                    @[simp]
                                                                                                                                                    theorem ModuleCat.ExtendRestrictScalarsAdj.counit_app {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) (x✝ : ModuleCat S) :
                                                                                                                                                    (counit f).app x✝ = Counit.map f
                                                                                                                                                    noncomputable def ModuleCat.extendRestrictScalarsAdj {R : Type u₁} {S : Type u₂} [CommRing R] [CommRing S] (f : R →+* S) :

                                                                                                                                                    Given commutative rings R, S and a ring hom f : R →+* S, the extension and restriction of scalars by f are adjoint to each other.

                                                                                                                                                    Equations
                                                                                                                                                      Instances For

                                                                                                                                                        The extension of scalars by the identity of a ring is isomorphic to the identity functor.

                                                                                                                                                        Equations
                                                                                                                                                          Instances For
                                                                                                                                                            noncomputable def ModuleCat.extendScalarsComp {R₁ R₂ R₃ : Type u₁} [CommRing R₁] [CommRing R₂] [CommRing R₃] (f₁₂ : R₁ →+* R₂) (f₂₃ : R₂ →+* R₃) :
                                                                                                                                                            extendScalars (f₂₃.comp f₁₂) (extendScalars f₁₂).comp (extendScalars f₂₃)

                                                                                                                                                            The extension of scalars by a composition of commutative ring morphisms identifies to the composition of the extension of scalars functors.

                                                                                                                                                            Equations
                                                                                                                                                              Instances For
                                                                                                                                                                theorem ModuleCat.homEquiv_extendScalarsComp {R₁ R₂ R₃ : Type u₁} [CommRing R₁] [CommRing R₂] [CommRing R₃] (f₁₂ : R₁ →+* R₂) (f₂₃ : R₂ →+* R₃) (M : ModuleCat R₁) :
                                                                                                                                                                theorem ModuleCat.extendScalarsComp_hom_app_one_tmul {R₁ R₂ R₃ : Type u₁} [CommRing R₁] [CommRing R₂] [CommRing R₃] (f₁₂ : R₁ →+* R₂) (f₂₃ : R₂ →+* R₃) (M : ModuleCat R₁) (m : M) :
                                                                                                                                                                (CategoryTheory.ConcreteCategory.hom ((extendScalarsComp f₁₂ f₂₃).hom.app M)) (1 ⊗ₜ[R₁] m) = 1 ⊗ₜ[R₂] (1 ⊗ₜ[R₁] m)
                                                                                                                                                                theorem ModuleCat.extendScalars_assoc {R₁ R₂ R₃ R₄ : Type u₁} [CommRing R₁] [CommRing R₂] [CommRing R₃] [CommRing R₄] (f₁₂ : R₁ →+* R₂) (f₂₃ : R₂ →+* R₃) (f₃₄ : R₃ →+* R₄) :
                                                                                                                                                                theorem ModuleCat.extendScalars_assoc_assoc {R₁ R₂ R₃ R₄ : Type u₁} [CommRing R₁] [CommRing R₂] [CommRing R₃] [CommRing R₄] (f₁₂ : R₁ →+* R₂) (f₂₃ : R₂ →+* R₃) (f₃₄ : R₃ →+* R₄) {Z : CategoryTheory.Functor (ModuleCat R₁) (ModuleCat R₄)} (h : ((extendScalars f₁₂).comp (extendScalars f₂₃)).comp (extendScalars f₃₄) Z) :
                                                                                                                                                                theorem ModuleCat.extendScalars_assoc' {R₁ R₂ R₃ R₄ : Type u₁} [CommRing R₁] [CommRing R₂] [CommRing R₃] [CommRing R₄] (f₁₂ : R₁ →+* R₂) (f₂₃ : R₂ →+* R₃) (f₃₄ : R₃ →+* R₄) :

                                                                                                                                                                The associativity compatibility for the extension of scalars, in the exact form that is needed in the definition CommRingCat.moduleCatExtendScalarsPseudofunctor in the file Mathlib/Algebra/Category/ModuleCat/Pseudofunctor.lean