Documentation Verification Report

Stalk

📁 Source: Mathlib/Algebra/Category/ModuleCat/Stalk.lean

Statistics

MetricCount
Definitionssmul, filteredColimitsModule, instModuleCarrierStalkCommRingCatCarrierAbPresheafOpensCarrier, instModuleCarrierStalkRingCatCarrierAbPresheafOpensCarrier
4
Theoremsι_smul, germ_ringCat_smul, germ_smul
3
Total7

CategoryTheory.Limits

Definitions

NameCategoryTheorems
filteredColimitsModule 📖CompOp

CategoryTheory.Limits.IsColimit

Theorems

NameKindAssumesProvesValidatesDepends On
ι_smul 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
AddCommGrpCat.carrier
CategoryTheory.ConcreteCategory.hom
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
CategoryTheory.Functor.map
RingCat.carrier
RingCat
RingCat.instCategory
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
RingCat.ring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
module
AddEquiv.eq_symm_apply
comp_coconePointUniqueUpToIso_hom
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.IsFilteredOrEmpty.cocone_maps
CategoryTheory.Functor.ιColimitType_eq_of_map_eq_map

CategoryTheory.Limits.colimit

Definitions

NameCategoryTheorems
smul 📖CompOp

PresheafOfModules

Definitions

NameCategoryTheorems
instModuleCarrierStalkCommRingCatCarrierAbPresheafOpensCarrier 📖CompOp
2 mathmath: AlgebraicGeometry.StructureSheaf.instIsScalarTowerCarrierStalkCommRingCatStructurePresheafInCommRingCatCarrierAbPresheafOpensCarrierTopModuleStructurePresheaf, germ_smul
instModuleCarrierStalkRingCatCarrierAbPresheafOpensCarrier 📖CompOp
1 mathmath: germ_ringCat_smul

Theorems

NameKindAssumesProvesValidatesDepends On
germ_ringCat_smul 📖mathematicalTopCat.carrier
TopologicalSpace.Opens
TopCat.str
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Ab
AddCommGrpCat.instCategory
presheaf
Opposite.op
TopCat.Presheaf.stalk
AddCommGrpCat.hasColimitsOfSize
UnivLE.self
AddCommGrpCat.carrier
CategoryTheory.ConcreteCategory.hom
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
TopCat.Presheaf.germ
RingCat.carrier
RingCat
RingCat.instCategory
ModuleCat.carrier
RingCat.ring
obj
SMulZeroClass.toSMul
AddZero.toZero
ModuleCat.isAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
RingCat.Colimits.hasColimits_ringCat
instModuleCarrierStalkRingCatCarrierAbPresheafOpensCarrier
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
CategoryTheory.Limits.IsColimit.ι_smul
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
map_smul
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_of_has_filtered_colimits
CategoryTheory.Limits.hasFilteredColimitsOfSize_of_hasColimitsOfSize
RingCat.Colimits.hasColimits_ringCat
AddCommGrpCat.hasColimit
Opposite.small
UnivLE.small
univLE_of_max
UnivLE.self
germ_smul 📖mathematicalTopCat.carrier
TopologicalSpace.Opens
TopCat.str
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Ab
AddCommGrpCat.instCategory
presheaf
CategoryTheory.Functor.comp
CommRingCat
CommRingCat.instCategory
RingCat
RingCat.instCategory
CategoryTheory.forget₂
RingHom
CommRingCat.carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
RingCat.carrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
Opposite.op
TopCat.Presheaf.stalk
AddCommGrpCat.hasColimitsOfSize
UnivLE.self
AddCommGrpCat.carrier
CategoryTheory.ConcreteCategory.hom
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
TopCat.Presheaf.germ
ModuleCat.carrier
obj
SMulZeroClass.toSMul
AddZero.toZero
ModuleCat.isAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
CommRingCat.Colimits.hasColimits_commRingCat
instModuleCarrierStalkCommRingCatCarrierAbPresheafOpensCarrier
CategoryTheory.Limits.IsColimit.ι_smul
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
map_smul
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_of_has_filtered_colimits
CategoryTheory.Limits.hasFilteredColimitsOfSize_of_hasColimitsOfSize
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CommRingCat.FilteredColimits.forget₂Ring_preservesFilteredColimits
AddCommGrpCat.hasColimit
Opposite.small
UnivLE.small
univLE_of_max
UnivLE.self

---

← Back to Index