Documentation

Mathlib.Algebra.Category.ModuleCat.Stalk

Module structure on stalks #

Let M be a presheaf of R-modules on a topological space. We endow M.presheaf.stalk x with an R.stalk x-module structure.

The key characterizing lemma is PresheafOfModules.germ_smul, which describes the compatibility of the scalar action and TopCat.Presheaf.germ.

noncomputable def CategoryTheory.Limits.colimit.smul {C : Type u_1} [SmallCategory C] [IsFiltered C] (R : Functor C RingCat) (M : Functor C Ab) [(i : C) β†’ Module ↑(R.obj i) ↑(M.obj i)] (H : βˆ€ {i j : C} (f : i ⟢ j) (r : ↑(R.obj i)) (m : ↑(M.obj i)), (ConcreteCategory.hom (M.map f)) (r β€’ m) = (ConcreteCategory.hom (R.map f)) r β€’ (ConcreteCategory.hom (M.map f)) m) (r : (R.comp (forget RingCat)).ColimitType) (m : (M.comp (forget Ab)).ColimitType) :

(Implementation). The scalar multiplication function on ColimitType.

Equations
    Instances For
      @[reducible, inline]
      noncomputable abbrev CategoryTheory.Limits.filteredColimitsModule {C : Type u_1} [SmallCategory C] [IsFiltered C] (R : Functor C RingCat) (M : Functor C Ab) [(i : C) β†’ Module ↑(R.obj i) ↑(M.obj i)] (H : βˆ€ {i j : C} (f : i ⟢ j) (r : ↑(R.obj i)) (m : ↑(M.obj i)), (ConcreteCategory.hom (M.map f)) (r β€’ m) = (ConcreteCategory.hom (R.map f)) r β€’ (ConcreteCategory.hom (M.map f)) m) :

      (Implementation). The module structure on AddCommGrpCat.FilteredColimits.colimit.

      Equations
        Instances For
          @[reducible, inline]
          noncomputable abbrev CategoryTheory.Limits.IsColimit.module {C : Type u_1} [SmallCategory C] [IsFiltered C] (R : Functor C RingCat) (M : Functor C Ab) [(i : C) β†’ Module ↑(R.obj i) ↑(M.obj i)] (H : βˆ€ {i j : C} (f : i ⟢ j) (r : ↑(R.obj i)) (m : ↑(M.obj i)), (ConcreteCategory.hom (M.map f)) (r β€’ m) = (ConcreteCategory.hom (R.map f)) r β€’ (ConcreteCategory.hom (M.map f)) m) {cR : Cocone R} (hcR : IsColimit cR) {cM : Cocone M} (hcM : IsColimit cM) :
          Module ↑cR.pt ↑cM.pt

          Given a cofiltered diagram of rings R, and a module M over R, this is the colim R-module structure of colim M.

          Equations
            Instances For
              theorem CategoryTheory.Limits.IsColimit.ΞΉ_smul {C : Type u_1} [SmallCategory C] [IsFiltered C] (R : Functor C RingCat) (M : Functor C Ab) [(i : C) β†’ Module ↑(R.obj i) ↑(M.obj i)] (H : βˆ€ {i j : C} (f : i ⟢ j) (r : ↑(R.obj i)) (m : ↑(M.obj i)), (ConcreteCategory.hom (M.map f)) (r β€’ m) = (ConcreteCategory.hom (R.map f)) r β€’ (ConcreteCategory.hom (M.map f)) m) {cR : Cocone R} (hcR : IsColimit cR) {cM : Cocone M} (hcM : IsColimit cM) (i : C) (r : ↑(R.obj i)) (m : ↑(M.obj i)) :