Documentation Verification Report

Shrink

πŸ“ Source: Mathlib/Algebra/Group/Shrink.lean

Statistics

MetricCount
DefinitionsaddEquiv, instAdd, instAddAction, instAddCommGroup, instAddCommMonoid, instAddCommSemigroup, instAddGroup, instAddMonoid, instAddSemigroup, instAddZeroClass, instCommGroup, instCommMonoid, instCommSemigroup, instDiv, instGroup, instInv, instMonoid, instMul, instMulAction, instMulOneClass, instNSMul, instNeg, instOne, instPow, instSemigroup, instSub, instZero, mulEquiv
28
TheoremsinstIsCancelAdd, instIsCancelMul, instIsLeftCancelAdd, instIsLeftCancelMul, instIsRightCancelAdd, instIsRightCancelMul, equivShrink_add, equivShrink_div, equivShrink_inv, equivShrink_mul, equivShrink_neg, equivShrink_smul, equivShrink_sub, equivShrink_symm_add, equivShrink_symm_div, equivShrink_symm_inv, equivShrink_symm_mul, equivShrink_symm_neg, equivShrink_symm_one, equivShrink_symm_smul, equivShrink_symm_sub, equivShrink_symm_zero
22
Total50

Shrink

Definitions

NameCategoryTheorems
addEquiv πŸ“–CompOp
2 mathmath: AddCommGrpCat.Colimits.colimitCocone_ΞΉ_app, AddCommGrpCat.Colimits.Quot.desc_colimitCocone
instAdd πŸ“–CompOp
7 mathmath: instIsRightCancelAdd, AddCommGrpCat.Colimits.colimitCocone_ΞΉ_app, instIsLeftCancelAdd, AddCommGrpCat.Colimits.Quot.desc_colimitCocone, equivShrink_add, equivShrink_symm_add, instIsCancelAdd
instAddAction πŸ“–CompOpβ€”
instAddCommGroup πŸ“–CompOp
3 mathmath: AddCommGrpCat.Colimits.colimitCocone_ΞΉ_app, AddCommGrpCat.Colimits.colimitCocone_pt, ModuleCat.isSeparator
instAddCommMonoid πŸ“–CompOp
8 mathmath: linearEquiv_symm_apply, Module.Free.Module.free_shrink, Module.Flat.shrink, continuousLinearEquiv_symm_apply, continuousLinearEquiv_apply, instFreeCarrierXβ‚‚ModuleCatProjectiveShortComplex, Module.Finite.Module.finite_shrink, linearEquiv_apply
instAddCommSemigroup πŸ“–CompOpβ€”
instAddGroup πŸ“–CompOpβ€”
instAddMonoid πŸ“–CompOpβ€”
instAddSemigroup πŸ“–CompOpβ€”
instAddZeroClass πŸ“–CompOp
2 mathmath: AddCommGrpCat.Colimits.colimitCocone_ΞΉ_app, AddCommGrpCat.Colimits.Quot.desc_colimitCocone
instCommGroup πŸ“–CompOpβ€”
instCommMonoid πŸ“–CompOpβ€”
instCommSemigroup πŸ“–CompOpβ€”
instDiv πŸ“–CompOp
2 mathmath: equivShrink_symm_div, equivShrink_div
instGroup πŸ“–CompOpβ€”
instInv πŸ“–CompOp
2 mathmath: equivShrink_inv, equivShrink_symm_inv
instMonoid πŸ“–CompOpβ€”
instMul πŸ“–CompOp
5 mathmath: instIsRightCancelMul, equivShrink_mul, instIsCancelMul, instIsLeftCancelMul, equivShrink_symm_mul
instMulAction πŸ“–CompOpβ€”
instMulOneClass πŸ“–CompOpβ€”
instNSMul πŸ“–CompOp
2 mathmath: equivShrink_smul, equivShrink_symm_smul
instNeg πŸ“–CompOp
2 mathmath: equivShrink_neg, equivShrink_symm_neg
instOne πŸ“–CompOp
1 mathmath: equivShrink_symm_one
instPow πŸ“–CompOpβ€”
instSemigroup πŸ“–CompOpβ€”
instSub πŸ“–CompOp
2 mathmath: equivShrink_symm_sub, equivShrink_sub
instZero πŸ“–CompOp
1 mathmath: equivShrink_symm_zero
mulEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCancelAdd πŸ“–mathematicalβ€”IsCancelAdd
Shrink
instAdd
β€”Equiv.isCancelAdd
instIsCancelMul πŸ“–mathematicalβ€”IsCancelMul
Shrink
instMul
β€”Equiv.isCancelMul
instIsLeftCancelAdd πŸ“–mathematicalβ€”IsLeftCancelAdd
Shrink
instAdd
β€”Equiv.isLeftCancelAdd
instIsLeftCancelMul πŸ“–mathematicalβ€”IsLeftCancelMul
Shrink
instMul
β€”Equiv.isLeftCancelMul
instIsRightCancelAdd πŸ“–mathematicalβ€”IsRightCancelAdd
Shrink
instAdd
β€”Equiv.isRightCancelAdd
instIsRightCancelMul πŸ“–mathematicalβ€”IsRightCancelMul
Shrink
instMul
β€”Equiv.isRightCancelMul

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
equivShrink_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
Shrink.instAdd
β€”Equiv.symm_apply_apply
equivShrink_div πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
Shrink.instDiv
β€”Equiv.symm_apply_apply
equivShrink_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
Shrink.instInv
β€”Equiv.symm_apply_apply
equivShrink_mul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
Shrink.instMul
β€”Equiv.symm_apply_apply
equivShrink_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
Shrink.instNeg
β€”Equiv.symm_apply_apply
equivShrink_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
Shrink.instNSMul
β€”Equiv.symm_apply_apply
equivShrink_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
Shrink.instSub
β€”Equiv.symm_apply_apply
equivShrink_symm_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
Shrink.instAdd
β€”Equiv.symm_apply_apply
equivShrink_symm_div πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
Shrink.instDiv
β€”Equiv.symm_apply_apply
equivShrink_symm_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
Shrink.instInv
β€”Equiv.symm_apply_apply
equivShrink_symm_mul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
Shrink.instMul
β€”Equiv.symm_apply_apply
equivShrink_symm_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
Shrink.instNeg
β€”Equiv.symm_apply_apply
equivShrink_symm_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
Shrink.instOne
β€”Equiv.symm_apply_apply
equivShrink_symm_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
Shrink.instNSMul
β€”Equiv.symm_apply_apply
equivShrink_symm_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
Shrink.instSub
β€”Equiv.symm_apply_apply
equivShrink_symm_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
Shrink.instZero
β€”Equiv.symm_apply_apply

---

← Back to Index