Documentation

Mathlib.Algebra.Group.Shrink

Transfer group structures from α to Shrink α #

instance Shrink.instOne {α : Type u_2} [Small.{v, u_2} α] [One α] :
Equations
    instance Shrink.instZero {α : Type u_2} [Small.{v, u_2} α] [Zero α] :
    Equations
      instance Shrink.instMul {α : Type u_2} [Small.{v, u_2} α] [Mul α] :
      Equations
        instance Shrink.instAdd {α : Type u_2} [Small.{v, u_2} α] [Add α] :
        Equations
          instance Shrink.instDiv {α : Type u_2} [Small.{v, u_2} α] [Div α] :
          Equations
            instance Shrink.instSub {α : Type u_2} [Small.{v, u_2} α] [Sub α] :
            Equations
              instance Shrink.instInv {α : Type u_2} [Small.{v, u_2} α] [Inv α] :
              Equations
                instance Shrink.instNeg {α : Type u_2} [Small.{v, u_2} α] [Neg α] :
                Equations
                  instance Shrink.instPow {M : Type u_1} {α : Type u_2} [Small.{v, u_2} α] [Pow α M] :
                  Equations
                    instance Shrink.instNSMul {M : Type u_1} {α : Type u_2} [Small.{v, u_2} α] [SMul M α] :
                    Equations
                      @[simp]
                      theorem equivShrink_symm_one {α : Type u_2} [Small.{v, u_2} α] [One α] :
                      (equivShrink α).symm 1 = 1
                      @[simp]
                      theorem equivShrink_symm_zero {α : Type u_2} [Small.{v, u_2} α] [Zero α] :
                      (equivShrink α).symm 0 = 0
                      @[simp]
                      theorem equivShrink_symm_mul {α : Type u_2} [Small.{v, u_2} α] [Mul α] (x y : Shrink.{v, u_2} α) :
                      (equivShrink α).symm (x * y) = (equivShrink α).symm x * (equivShrink α).symm y
                      @[simp]
                      theorem equivShrink_symm_add {α : Type u_2} [Small.{v, u_2} α] [Add α] (x y : Shrink.{v, u_2} α) :
                      (equivShrink α).symm (x + y) = (equivShrink α).symm x + (equivShrink α).symm y
                      @[simp]
                      theorem equivShrink_mul {α : Type u_2} [Small.{v, u_2} α] [Mul α] (x y : α) :
                      (equivShrink α) (x * y) = (equivShrink α) x * (equivShrink α) y
                      @[simp]
                      theorem equivShrink_add {α : Type u_2} [Small.{v, u_2} α] [Add α] (x y : α) :
                      (equivShrink α) (x + y) = (equivShrink α) x + (equivShrink α) y
                      @[simp]
                      theorem equivShrink_symm_smul {α : Type u_2} [Small.{v, u_2} α] {M : Type u_3} [SMul M α] (m : M) (x : Shrink.{v, u_2} α) :
                      (equivShrink α).symm (m x) = m (equivShrink α).symm x
                      @[simp]
                      theorem equivShrink_smul {α : Type u_2} [Small.{v, u_2} α] {M : Type u_3} [SMul M α] (m : M) (x : α) :
                      (equivShrink α) (m x) = m (equivShrink α) x
                      @[simp]
                      theorem equivShrink_symm_div {α : Type u_2} [Small.{v, u_2} α] [Div α] (x y : Shrink.{v, u_2} α) :
                      (equivShrink α).symm (x / y) = (equivShrink α).symm x / (equivShrink α).symm y
                      @[simp]
                      theorem equivShrink_symm_sub {α : Type u_2} [Small.{v, u_2} α] [Sub α] (x y : Shrink.{v, u_2} α) :
                      (equivShrink α).symm (x - y) = (equivShrink α).symm x - (equivShrink α).symm y
                      @[simp]
                      theorem equivShrink_div {α : Type u_2} [Small.{v, u_2} α] [Div α] (x y : α) :
                      (equivShrink α) (x / y) = (equivShrink α) x / (equivShrink α) y
                      @[simp]
                      theorem equivShrink_sub {α : Type u_2} [Small.{v, u_2} α] [Sub α] (x y : α) :
                      (equivShrink α) (x - y) = (equivShrink α) x - (equivShrink α) y
                      @[simp]
                      theorem equivShrink_symm_neg {α : Type u_2} [Small.{v, u_2} α] [Neg α] (x : Shrink.{v, u_2} α) :
                      @[simp]
                      theorem equivShrink_inv {α : Type u_2} [Small.{v, u_2} α] [Inv α] (x : α) :
                      @[simp]
                      theorem equivShrink_neg {α : Type u_2} [Small.{v, u_2} α] [Neg α] (x : α) :
                      (equivShrink α) (-x) = -(equivShrink α) x
                      def Shrink.mulEquiv {α : Type u_2} [Small.{v, u_2} α] [Mul α] :

                      Shrink α to a smaller universe preserves multiplication.

                      Equations
                        Instances For
                          def Shrink.addEquiv {α : Type u_2} [Small.{v, u_2} α] [Add α] :

                          Shrink α to a smaller universe preserves addition.

                          Equations
                            Instances For
                              instance Shrink.instGroup {α : Type u_2} [Small.{v, u_2} α] [Group α] :
                              Equations
                                instance Shrink.instMulAction {M : Type u_1} {α : Type u_2} [Small.{v, u_2} α] [Monoid M] [MulAction M α] :
                                Equations
                                  instance Shrink.instAddAction {M : Type u_1} {α : Type u_2} [Small.{v, u_2} α] [AddMonoid M] [AddAction M α] :
                                  Equations