Documentation Verification Report

Semifield

πŸ“ Source: Mathlib/Algebra/Order/Floor/Semifield.lean

Statistics

MetricCount
DefinitionsevalNatFloor, Semifield
2
TheoremsnatFloor, natFloor, natFloor, natFloor, ceil_le_mul, ceil_le_two_mul, ceil_lt_mul, ceil_lt_two_mul, div_two_lt_floor, floor_div_eq_div, floor_div_natCast, floor_div_ofNat, mul_lt_floor
13
Total15

Mathlib.Meta.NormNum

Definitions

NameCategoryTheorems
evalNatFloor πŸ“–CompOpβ€”

Mathlib.Meta.NormNum.IsInt

Theorems

NameKindAssumesProvesValidatesDepends On
natFloor πŸ“–mathematicalMathlib.Meta.NormNum.IsIntMathlib.Meta.NormNum.IsNat
Nat.instAddMonoidWithOne
Nat.floor
Ring.toSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Nat.floor_of_nonpos
Int.cast_negOfNat
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing

Mathlib.Meta.NormNum.IsNNRat

Theorems

NameKindAssumesProvesValidatesDepends On
natFloor πŸ“–mathematicalMathlib.Meta.NormNum.IsNNRat
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Mathlib.Meta.NormNum.IsNat
Nat.instAddMonoidWithOne
Nat.floor
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”to_eq
Nat.floor_div_eq_div
Nat.cast_id

Mathlib.Meta.NormNum.IsNat

Theorems

NameKindAssumesProvesValidatesDepends On
natFloor πŸ“–mathematicalMathlib.Meta.NormNum.IsNat
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Nat.instAddMonoidWithOne
Nat.floor
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Nat.floor_natCast

Mathlib.Meta.NormNum.IsRat

Theorems

NameKindAssumesProvesValidatesDepends On
natFloor πŸ“–mathematicalMathlib.Meta.NormNum.IsRat
DivisionRing.toRing
Field.toDivisionRing
Mathlib.Meta.NormNum.IsNat
Nat.instAddMonoidWithOne
Nat.floor
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Nat.cast_zero
Nat.floor_eq_zero
lt_of_le_of_lt
Int.cast_negOfNat
invOf_eq_inv
neg_mul
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsOrderedRing.toPosMulMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
one_pos
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
ceil_le_mul πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Preorder.toLE
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toNatCast
ceil
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”LE.le.eq_or_lt
mul_div_cancelβ‚€
ne_of_gt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_ofNat
cast_one
cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toZeroLEOneClass
ceil_le
div_le_self
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
cast_nonneg'
LT.lt.le
ceil_lt_mul
ceil_le_two_mul πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instAtLeastTwoHAddOfNat
ceil
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”instAtLeastTwoHAddOfNat
ceil_le_mul
one_lt_two
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
cast_one
ceil_one
one_div
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
ceil_lt_mul πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toNatCast
ceil
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”le_total
mono_cast
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
ceil_le_ceil
div_lt_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_ofNat
cast_one
ceil_lt_add_one
LE.le.trans'
le_of_lt
inv_pos_of_pos
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
mul_inv_cancelβ‚€
ne_of_gt
add_le_add_right
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
sub_one_mul
add_sub_cancel
ceil_lt_two_mul πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instAtLeastTwoHAddOfNat
ceil
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”instAtLeastTwoHAddOfNat
ceil_lt_mul
one_lt_two
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
cast_one
ceil_one
one_div
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
div_two_lt_floor πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Preorder.toLT
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
instAtLeastTwoHAddOfNat
floor
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”instAtLeastTwoHAddOfNat
div_eq_inv_mul
mul_lt_floor
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
cast_zero
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.instAtLeastTwo
cast_one
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
ceil_one
floor_div_eq_div πŸ“–mathematicalβ€”floor
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”floor_natCast
floor_div_natCast
floor_div_natCast πŸ“–mathematicalβ€”floor
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”cast_zero
div_zero
floor_zero
div_mul_cancelβ‚€
ne_of_gt
cast_pos'
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
mul_cast_floor_div_cancel
floor_div_ofNat πŸ“–mathematicalβ€”floor
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”floor_div_natCast
mul_lt_floor πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Preorder.toLE
AddMonoidWithOne.toNatCast
ceil
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
floor
β€”mul_lt_mul_of_pos_left
IsStrictOrderedRing.toPosMulStrictMono
lt_floor_add_one
mul_add_one
Distrib.leftDistribClass
le_sub_iff_add_le'
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
one_sub_mul
div_le_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.sub_nonpos_of_le
ceil_le
le_floor

(root)

Definitions

NameCategoryTheorems
Semifield πŸ“–CompDataβ€”

---

← Back to Index