Documentation

Mathlib.Algebra.Order.Floor.Semifield

Lemmas on Nat.floor and Nat.ceil for semifields #

This file contains basic results on the natural-valued floor and ceiling functions.

Tags #

rounding, floor, ceil

theorem Nat.floor_div_eq_div {K : Type u_2} [Semifield K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] (m n : โ„•) :
โŒŠโ†‘m / โ†‘nโŒ‹โ‚Š = m / n

Natural division is the floor of field division.

theorem Nat.mul_lt_floor {K : Type u_2} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] {a b : K} (hbโ‚€ : 0 < b) (hb : b < 1) (hba : โ†‘โŒˆb / (1 - b)โŒ‰โ‚Š โ‰ค a) :
theorem Nat.ceil_lt_mul {K : Type u_2} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorSemiring K] {a b : K} (hb : 1 < b) (hba : โ†‘โŒˆ(b - 1)โปยนโŒ‰โ‚Š / b < a) :

norm_num extension for Nat.floor #