Documentation Verification Report

WithTop

πŸ“ Source: Mathlib/Algebra/Order/Monoid/Unbundled/WithTop.lean

Statistics

MetricCount
DefinitionswithBotMap, withTopMap, withBotMap, withTopMap, withBotMap, withTopMap, AddSemigroup, add, addCommMonoid, addCommMonoidWithOne, addCommSemigroup, addHom, addMonoid, addMonoidWithOne, addZeroClass, one, zero, add, addCommMonoid, addCommMonoidWithOne, addCommSemigroup, addHom, addMonoid, addMonoidWithOne, addSemigroup, addZeroClass, one, zero, withBotMap, withTopMap
30
TheoremswithBotMap_apply, withTopMap_apply, withBotMap_apply, withTopMap_apply, withBotMap_apply, withTopMap_apply, addLECancellable_coe, addLECancellable_iff_ne_bot, addLECancellable_of_lt_bot, addLECancellable_of_ne_bot, addLeftMono, addLeftReflectLT, addRightMono, addRightReflectLT, add_bot, add_coe_eq_bot_iff, add_eq_bot, add_eq_coe, add_le_add_iff_left, add_le_add_iff_right, add_le_add_iff_right', add_left_cancel, add_left_inj, add_lt_add_iff_left, add_lt_add_iff_right, add_lt_add_left, add_lt_add_of_le_of_lt, add_lt_add_of_lt_of_le, add_lt_add_right, add_ne_bot, add_right_cancel, add_right_inj, bot_add, bot_lt_add, bot_lt_natCast, bot_lt_one, bot_ne_natCast, bot_ne_ofNat, bot_ne_one, bot_ne_zero, bot_neg, charZero, coe_add, coe_addHom, coe_add_eq_bot_iff, coe_eq_ofNat, coe_eq_one, coe_eq_zero, coe_le_one, coe_le_zero, coe_lt_one, coe_lt_zero, coe_natCast, coe_nonneg, coe_nsmul, coe_ofNat, coe_one, coe_pos, coe_zero, le_of_add_le_add_left, le_of_add_le_add_right, map_add, map_eq_natCast_iff, map_eq_ofNat_iff, map_eq_one_iff, map_eq_zero_iff, map_natCast, map_ofNat, map_one, map_zero, natCast_eq_map_iff, natCast_ne_bot, ofNat_eq_coe, ofNat_eq_map_iff, ofNat_ne_bot, one_eq_coe, one_eq_map_iff, one_le_coe, one_lt_coe, one_ne_bot, unbotD_one, unbotD_zero, unbot_one, unbot_zero, zeroLEOneClass, zero_eq_coe, zero_eq_map_iff, zero_ne_bot, addLECancellable_coe, addLECancellable_iff_ne_top, addLECancellable_of_lt_top, addLECancellable_of_ne_top, addLeftMono, addLeftReflectLT, addRightMono, addRightReflectLT, add_coe_eq_top_iff, add_eq_coe, add_eq_top, add_le_add_iff_left, add_le_add_iff_right, add_left_cancel, add_left_inj, add_lt_add, add_lt_add_iff_left, add_lt_add_iff_right, add_lt_add_left, add_lt_add_of_le_of_lt, add_lt_add_of_lt_of_le, add_lt_add_right, add_lt_top, add_ne_top, add_right_cancel, add_right_inj, add_top, charZero, coe_add, coe_addHom, coe_add_eq_top_iff, coe_eq_ofNat, coe_eq_one, coe_eq_zero, coe_le_one, coe_le_zero, coe_lt_one, coe_lt_zero, coe_natCast, coe_ne_one, coe_ne_zero, coe_nonneg, coe_nsmul, coe_ofNat, coe_one, coe_pos, coe_zero, existsAddOfLE, le_of_add_le_add_left, le_of_add_le_add_right, map_add, map_eq_natCast_iff, map_eq_ofNat_iff, map_eq_one_iff, map_eq_zero_iff, map_natCast, map_ofNat, map_one, map_zero, natCast_eq_map_iff, natCast_lt_top, natCast_ne_top, ofNat_eq_coe, ofNat_eq_map_iff, ofNat_ne_top, one_eq_coe, one_eq_map_iff, one_le_coe, one_lt_coe, one_lt_top, one_ne_top, top_add, top_ne_natCast, top_ne_ofNat, top_ne_one, top_ne_zero, top_pos, untopD_one, untopD_zero, untop_one, untop_zero, zeroLEOneClass, zero_eq_coe, zero_eq_map_iff, zero_ne_top, withBotMap_apply, withTopMap_apply
175
Total205

AddHom

Definitions

NameCategoryTheorems
withBotMap πŸ“–CompOp
1 mathmath: withBotMap_apply
withTopMap πŸ“–CompOp
1 mathmath: withTopMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
withBotMap_apply πŸ“–mathematicalβ€”DFunLike.coe
AddHom
WithBot
WithBot.add
funLike
withBotMap
WithBot.map
β€”β€”
withTopMap_apply πŸ“–mathematicalβ€”DFunLike.coe
AddHom
WithTop
WithTop.add
funLike
withTopMap
WithTop.map
β€”β€”

AddMonoidHom

Definitions

NameCategoryTheorems
withBotMap πŸ“–CompOp
1 mathmath: withBotMap_apply
withTopMap πŸ“–CompOp
1 mathmath: withTopMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
withBotMap_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
WithBot
AddZeroClass.toAddZero
WithBot.addZeroClass
instFunLike
withBotMap
WithBot.map
β€”β€”
withTopMap_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
WithTop
AddZeroClass.toAddZero
WithTop.addZeroClass
instFunLike
withTopMap
WithTop.map
β€”β€”

OneHom

Definitions

NameCategoryTheorems
withBotMap πŸ“–CompOp
1 mathmath: withBotMap_apply
withTopMap πŸ“–CompOp
1 mathmath: withTopMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
withBotMap_apply πŸ“–mathematicalβ€”DFunLike.coe
OneHom
WithBot
WithBot.one
funLike
withBotMap
WithBot.map
β€”β€”
withTopMap_apply πŸ“–mathematicalβ€”DFunLike.coe
OneHom
WithTop
WithTop.one
funLike
withTopMap
WithTop.map
β€”β€”

WithBot

Definitions

NameCategoryTheorems
AddSemigroup πŸ“–CompOpβ€”
add πŸ“–CompOp
97 mathmath: add_le_add_iff_right', Polynomial.degree_mul_le, Polynomial.degree_add_div, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim, ringKrullDim_succ_le_ringKrullDim_polynomial, addRightMono, addLeftMono, Module.supportDim_add_length_eq_supportDim_of_isRegular, Nat.WithBot.add_eq_two_iff, Polynomial.degree_list_prod, lt_add_one_iff, Polynomial.degree_list_prod_le, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim_of_mem_jacobson, add_le_add_iff_left, ringKrullDim_succ_le_ringKrullDim_powerseries, addLeftReflectLT, add_coe_eq_bot_iff, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim, addLECancellable_of_ne_bot, Order.krullDim_le_of_krullDim_preimage_le, bot_add, Polynomial.degree_mul_le_of_le, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_maximalIdeal, ringKrullDim_succ_le_of_surjective, Finset.fold_max_add, add_bot, Nat.WithBot.add_eq_one_iff, add_le_add_iff_right, WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, WithZero.toMulBot_lt, bot_lt_add, Module.ringKrullDim_quotient_add_one_of_mem_nonZeroDivisors, Order.krullDim_WithTop, ringKrullDim_le_ringKrullDim_quotient_add_card, Nat.WithBot.add_eq_three_iff, Ideal.height_le_ringKrullDim_quotient_add_one, addLECancellable_coe, ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank, add_lt_add_of_lt_of_le, add_lt_add_left, WithZero.toMulBot_coe_ofAdd, add_eq_coe, map_add, ringKrullDim_add_length_eq_ringKrullDim_of_isRegular, Ideal.height_le_ringKrullDim_quotient_add_encard, Polynomial.degree_wronskian_lt_add, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_nonZeroDivisors, coe_add_eq_bot_iff, Module.supportDim_quotSMulTop_succ_eq_supportDim, Polynomial.degree_mul', ringKrullDim_quotient_succ_le_of_nonZeroDivisor, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_jacobson, WithZero.toMulBot_zero, ringKrullDim_add_natCard_le_ringKrullDim_mvPolynomial, addLECancellable_of_lt_bot, ringKrullDim_le_ringKrullDim_add_card, Module.supportDim_le_supportDim_quotSMulTop_succ, addLECancellable_iff_ne_bot, Module.supportDim_quotSMulTop_succ_eq_supportDim_mem_jacobson, Polynomial.Monic.degree_mul, Polynomial.ringKrullDim_le, WithZero.toMulBot_coe, Polynomial.degree_add_degree_leadingCoeff_inv, Polynomial.degree_add_divByMonic, Order.krullDim_withBot, le_add_self, Module.supportDim_le_supportDim_quotSMulTop_succ_of_mem_jacobson, Nat.WithBot.add_one_le_of_lt, Polynomial.degree_mul_X, height_le_ringKrullDim_quotient_add_spanFinrank, Nat.WithBot.add_eq_zero_iff, ringKrullDim_add_enatCard_le_ringKrullDim_mvPolynomial, add_right_inj, ringKrullDim_le_ringKrullDim_add_spanFinrank, le_self_add, add_lt_add_right, coe_add, WithZero.toMulBot_le, addRightReflectLT, Polynomial.ringKrullDim_of_isNoetherianRing, add_lt_add_of_le_of_lt, MvPolynomial.ringKrullDim_of_isNoetherianRing, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_jacobson, Polynomial.degree_mul_X_pow, ringKrullDim_le_ringKrullDim_quotSMulTop_succ, Module.supportDim_quotSMulTop_succ_le_of_notMem_minimalPrimes, AddHom.withBotMap_apply, WithZero.toMulBot_symm_bot, add_left_inj, add_lt_add_iff_left, Order.krullDim_le_of_krullDim_preimage_le', WithZero.toMulBot_strictMono, ringKrullDim_le_ringKrullDim_quotient_add_encard, Polynomial.degree_mul, add_lt_add_iff_right, add_eq_bot, add_one_le_iff
addCommMonoid πŸ“–CompOp
12 mathmath: sum_eq_bot_iff, Polynomial.degree_multiset_prod_of_monic, Polynomial.degree_prod_le, Polynomial.degree_prod, Polynomial.degree_multiset_prod_le, Polynomial.degree_prod_of_monic, isOrderedAddMonoid, instArchimedean, sum_lt_bot, bot_lt_sum_iff, coe_sum, Polynomial.degree_multiset_prod
addCommMonoidWithOne πŸ“–CompOpβ€”
addCommSemigroup πŸ“–CompOpβ€”
addHom πŸ“–CompOp
1 mathmath: coe_addHom
addMonoid πŸ“–CompOp
5 mathmath: Polynomial.degree_pow_le, Polynomial.degree_pow, WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, coe_nsmul, Polynomial.degree_pow'
addMonoidWithOne πŸ“–CompOp
136 mathmath: WittVector.RecursionMain.succNthDefiningPoly_degree, Polynomial.degree_pow_le_of_le, Order.LTSeries.length_le_krullDim, Order.krullDim_lt_coe_iff, Polynomial.coe_lt_degree, Polynomial.MonicDegreeEq.degree, CategoryTheory.injectiveDimension_le_iff, Polynomial.degree_quadratic_lt, map_eq_natCast_iff, Ring.krullDimLE_iff, Polynomial.Sequence.degree_eq', PowerSeries.degree_weierstrassMod_lt, Polynomial.degree_eq_natDegree, Module.supportDim_add_length_eq_supportDim_of_isRegular, Nat.WithBot.add_eq_two_iff, Order.le_krullDim_iff, lt_add_one_iff, Polynomial.IsDistinguishedAt.degree_eq_coe_lift_order_map, Lagrange.eq_interpolate_iff, Polynomial.degree_X_pow_add_C, PowerSeries.degree_trunc_lt, Polynomial.card_roots_map_le_degree, Cubic.degree_of_a_eq_zero', MvPolynomial.degree_optionEquivLeft, Polynomial.Splits.degree_eq_card_roots, Cubic.degree_of_a_ne_zero', Polynomial.degree_quadratic, minpoly.degree_le, PowerSeries.IsWeierstrassDivisionAt.degree_lt, Polynomial.degree_cubic_lt, Matrix.charpoly_degree_eq_dim, CategoryTheory.injectiveDimension_ge_iff, Polynomial.Chebyshev.degree_T, Polynomial.degree_X_pow_le, Polynomial.degree_monomial_le, Polynomial.natDegree_lt_iff_degree_lt, Lagrange.degree_interpolate_erase_lt, Polynomial.degree_quadratic_le, CategoryTheory.projectiveDimension_lt_iff, Lagrange.degree_interpolate_lt, map_natCast, Polynomial.Sequence.degree_eq, Polynomial.exists_approx_polynomial_aux, Polynomial.degree_freeMonic, PowerBasis.mem_span_pow', WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, Polynomial.degree_derivative_eq, Polynomial.degree_le_of_natDegree_le, ringKrullDim_le_ringKrullDim_quotient_add_card, Nat.WithBot.add_eq_three_iff, PowerBasis.degree_minpoly, Polynomial.degree_hermite, Lagrange.degree_nodal, Polynomial.degree_X_pow_sub_C, Polynomial.degree_le_natDegree, natCast_eq_map_iff, ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank, Polynomial.exists_multiset_roots, Ideal.mem_leadingCoeffNth, bot_lt_natCast, Polynomial.degree_C_mul_X_pow_le, charZero, Polynomial.Chebyshev.degree_U_of_ne_neg_one, ringKrullDim_add_length_eq_ringKrullDim_of_isRegular, Polynomial.degreeLT_succ_eq_degreeLE, Polynomial.degree_eq_iff_natDegree_eq_of_pos, Ideal.is_fg_degreeLE, Polynomial.degree_cubic, Cubic.degree_of_a_eq_zero, Polynomial.degree_X_pow, Cubic.equiv_symm_apply_b, Lagrange.degree_basis, ringKrullDim_add_natCard_le_ringKrullDim_mvPolynomial, WeierstrassCurve.Affine.degree_polynomial, LinearRecurrence.charPoly_degree_eq_order, ringKrullDim_le_ringKrullDim_add_card, Lagrange.degree_interpolate_le, CategoryTheory.projectiveDimension_le_iff, Cubic.degree_of_a_ne_zero, MvPolynomial.degree_finSuccEquiv, CategoryTheory.projectiveDimension_ge_iff, Field.primitive_element_iff_minpoly_degree_eq, CategoryTheory.injectiveDimension_lt_iff, Polynomial.ringKrullDim_le, Matrix.charpoly_sub_diagonal_degree_lt, Cubic.equiv_symm_apply_c, Polynomial.card_roots, Polynomial.ofFn_degree_lt, Polynomial.degree_eq_card_roots, PowerBasis.degree_minpolyGen, succ_natCast, ringKrullDim_nat, Polynomial.degree_lt_iff_coeff_zero, Nat.cast_withBot, Polynomial.degree_cyclotomic', Polynomial.le_degree_of_ne_zero, Cubic.equiv_apply_coe, PowerSeries.IsWeierstrassFactorization.degree_eq_coe_lift_order_map, Polynomial.le_degree_of_mem_supp, height_le_ringKrullDim_quotient_add_spanFinrank, PowerSeries.IsWeierstrassFactorizationAt.degree_eq_coe_lift_order_map_of_ne_top, PowerSeries.isWeierstrassDivisionAt_iff, Polynomial.degree_update_le, Polynomial.integralNormalization_coeff, Cubic.degree_of_b_ne_zero', Polynomial.degree_shiftedLegendre, Order.krullDim_eq_length_of_finiteDimensionalOrder, Polynomial.span_le_degreeLE_of_finite, Order.KrullDimLE.krullDim_le, ringKrullDim_le_ringKrullDim_add_spanFinrank, Polynomial.degree_cubic_le, Cubic.equiv_symm_apply_d, Irreducible.degree_le_two, Polynomial.degree_eq_card_roots', Cubic.equiv_symm_apply_a, MvPolynomial.ringKrullDim_of_isNoetherianRing, Polynomial.degree_sum_fin_lt, Polynomial.degree_eq_iff_natDegree_eq, Polynomial.degreeLE_eq_span_X_pow, Polynomial.natDegree_le_iff_degree_le, Polynomial.degree_monomial, Polynomial.degree_mul_X_pow, Nat.WithBot.coe_nonneg, Polynomial.degree_C_mul_X_pow, coe_natCast, Polynomial.Chebyshev.degree_U_natCast, Polynomial.degree_cyclotomic, Polynomial.card_roots_sub_C, Polynomial.mem_degreeLT, PowerBasis.dim_le_degree_of_root, Polynomial.degree_linear_lt, Order.krullDimLE_iff, Polynomial.exists_mul_add_mul_eq_C_resultant, Cubic.degree_of_b_ne_zero, Polynomial.roots_def, add_one_le_iff
addZeroClass πŸ“–CompOp
2 mathmath: coe_addHom, AddMonoidHom.withBotMap_apply
one πŸ“–CompOp
93 mathmath: coe_eq_one, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim, ringKrullDim_succ_le_ringKrullDim_polynomial, zeroLEOneClass, coe_lt_one, Cubic.degree_of_b_eq_zero, map_eq_one_iff, ringKrullDim_eq_one_iff_of_isLocalRing_isDomain, Order.krullDim_le_one_iff, Nat.WithBot.add_eq_two_iff, Polynomial.Splits.degree_le_one_of_irreducible, NonemptyInterval.coe_one_interval, lt_add_one_iff, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim_of_mem_jacobson, ringKrullDim_succ_le_ringKrullDim_powerseries, unbot_one, one_lt_coe, Polynomial.degree_X_sub_C, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim, Order.krullDim_le_of_krullDim_preimage_le, Interval.one_mem_one, Polynomial.Splits.degree_eq_one_of_irreducible, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_maximalIdeal, ringKrullDim_succ_le_of_surjective, Polynomial.degree_X_le, Nat.WithBot.add_eq_one_iff, Module.ringKrullDim_quotient_add_one_of_mem_nonZeroDivisors, Order.krullDim_WithTop, Polynomial.Splits.def, succ_one, Nat.WithBot.add_eq_three_iff, Lagrange.degree_basisDivisor_of_ne, Ideal.height_le_ringKrullDim_quotient_add_one, Polynomial.splits_iff, map_one, Polynomial.degree_C_lt, Order.krullDim_le_one_iff_of_boundedOrder, Polynomial.degree_X_sub_C_le, Polynomial.degree_C_mul_X_le, Interval.coe_one, withBotSucc_one, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_nonZeroDivisors, Module.supportDim_quotSMulTop_succ_eq_supportDim, Nat.WithBot.one_le_iff_zero_lt, ringKrullDim_quotient_succ_le_of_nonZeroDivisor, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_jacobson, IsPrincipalIdealRing.ringKrullDim_eq_one, Polynomial.Splits.splits, Order.one_le_krullDim_iff, Cubic.degree_of_c_ne_zero, Module.supportDim_le_supportDim_quotSMulTop_succ, Polynomial.degree_X, Module.supportDim_quotSMulTop_succ_eq_supportDim_mem_jacobson, Polynomial.ringKrullDim_le, unbotD_one, Nat.WithBot.lt_one_iff_le_zero, minpoly.degree_eq_one_iff, IsSepClosed.degree_eq_one_of_irreducible, one_eq_coe, Order.krullDim_le_one_iff_forall_isMax, Order.krullDim_withBot, Polynomial.degree_eq_one_of_irreducible_of_splits, coe_one, Module.supportDim_le_supportDim_quotSMulTop_succ_of_mem_jacobson, Interval.pure_one, Nat.WithBot.add_one_le_of_lt, Polynomial.degree_eq_one_of_irreducible_of_root, Polynomial.degree_mul_X, Interval.mul_eq_one_iff, Cubic.degree_of_b_eq_zero', Cubic.degree_of_c_ne_zero', Polynomial.degree_linear_le, Order.krullDim_eq_one_iff_of_boundedOrder, Polynomial.degree_C_mul_X, Order.krullDim_le_one_iff_forall_isMin, Polynomial.ringKrullDim_of_isNoetherianRing, OneHom.withBotMap_apply, Polynomial.splits_iff_splits, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_jacobson, IsAlgClosed.degree_eq_one_of_irreducible, Order.krullDim_of_isSimpleOrder, ringKrullDim_le_ringKrullDim_quotSMulTop_succ, Module.supportDim_quotSMulTop_succ_le_of_notMem_minimalPrimes, bot_lt_one, Polynomial.degree_linear, Order.krullDim_le_of_krullDim_preimage_le', Finset.max_one, one_le_iff_pos, one_eq_map_iff, coe_le_one, one_le_coe, Polynomial.degree_X_add_C, add_one_le_iff
zero πŸ“–CompOp
109 mathmath: mul_bot', IsAlgClosed.roots_eq_zero_iff_degree_nonpos, instPosMulStrictMono, coe_le_zero, zeroLEOneClass, instMulPosMono, Order.krullDim_nonneg_iff, Polynomial.zero_le_degree_iff, Order.krullDim_pos_iff, coe_eq_zero, Nat.WithBot.add_eq_two_iff, Polynomial.degree_list_prod, Order.krullDim_eq_zero_of_unique, minpoly.degree_pos, Polynomial.tendsto_atTop_iff_leadingCoeff_nonneg, Polynomial.degree_list_prod_le, Polynomial.degree_pos_of_root, Order.krullDim_nonpos_iff_forall_isMax, map_eq_zero_iff, ringKrullDim_nonneg_of_nontrivial, ringKrullDimZero_iff_ringKrullDim_eq_zero, Order.krullDim_nonpos_iff_forall_isMin, Polynomial.tendsto_atBot_iff_leadingCoeff_nonpos, instPosMulReflectLE, Polynomial.abs_tendsto_atTop_iff, Polynomial.degree_C, LaurentPolynomial.degree_C, coe_pos, instMulPosStrictMono, topologicalKrullDim_zero_of_discreteTopology, Interval.coe_zero, unbot_zero, Interval.pure_zero, Polynomial.abs_tendsto_atBot_iff, coe_lt_zero, zero_eq_coe, Cubic.degree_of_d_ne_zero, Interval.add_eq_zero_iff, Nat.WithBot.add_eq_one_iff, Order.krullDim_nonpos_of_subsingleton, Nat.WithBot.add_eq_three_iff, Polynomial.degree_pos_of_ne_zero_of_nonunit, withBotSucc_zero, Irreducible.degree_pos, instPosMulMono, Polynomial.Monic.degree_pos, bot_neg, Polynomial.rootOfSplits'_eq_rootOfSplits, Polynomial.degree_intCast_le, Nat.WithBot.lt_zero_iff, Finset.max_zero, mul_def, bot_mul', Nat.WithBot.one_le_iff_zero_lt, Polynomial.degree_one_le, Polynomial.tendsto_nhds_iff, coe_nonneg, succ_zero, Order.krullDim_eq_zero_iff_of_orderTop, Polynomial.degree_one, Polynomial.degree_zero_le, Polynomial.Monic.degree_pos_of_not_isUnit, ringKrullDim_eq_zero_of_isField, instNoZeroDivisors, Polynomial.isBoundedUnder_abs_atBot_iff, Polynomial.degree_pos_of_not_isUnit_of_dvd_monic, Polynomial.mem_closure_X_union_C, Interval.length_zero, Polynomial.degree_eq_zero_of_isUnit, Nat.WithBot.lt_one_iff_le_zero, NonemptyInterval.coe_zero_interval, Polynomial.isBoundedUnder_abs_atTop_iff, Order.krullDim_pos_iff_of_orderTop, instMulPosReflectLT, LaurentPolynomial.degree_C_ite, Order.krullDim_eq_zero, Polynomial.degree_le_zero_iff, Order.krullDim_pos_iff_of_orderBot, Polynomial.isUnit_iff_degree_eq_zero, Polynomial.degree_pos_of_aeval_root, unbotD_zero, zero_eq_map_iff, Interval.zero_mem_zero, Polynomial.abs_isBoundedUnder_iff, instMulPosReflectLE, Polynomial.natDegree_eq_zero_iff_degree_le_zero, Nat.WithBot.add_eq_zero_iff, Polynomial.degree_leadingCoeff_inv, Polynomial.degree_pos_of_irreducible, Cubic.degree_of_d_ne_zero', ZeroHom.withBotMap_apply, Order.krullDim_nonneg, Polynomial.degree_cyclotomic_pos, Polynomial.degree_pos_of_evalβ‚‚_root, ringKrullDim_eq_zero_of_field, Cubic.degree_of_c_eq_zero, Polynomial.natDegree_pos_iff_degree_pos, Cubic.degree_of_c_eq_zero', instPosMulReflectLT, Nat.WithBot.coe_nonneg, map_zero, Order.krullDim_eq_zero_iff_of_orderBot, Polynomial.Monic.degree_le_zero_iff_eq_one, one_le_iff_pos, LaurentPolynomial.degree_C_le, Polynomial.degree_natCast_le, Polynomial.degree_coe_units, coe_zero, Polynomial.degree_C_le

Theorems

NameKindAssumesProvesValidatesDepends On
addLECancellable_coe πŸ“–mathematicalβ€”AddLECancellable
WithBot
add
instLE
some
β€”addLECancellable_of_ne_bot
coe_ne_bot
addLECancellable_iff_ne_bot πŸ“–mathematicalβ€”AddLECancellable
WithBot
add
Preorder.toLE
instPreorder
β€”LT.lt.not_ge
bot_lt_coe
add_bot
addLECancellable_of_ne_bot
addLECancellable_of_lt_bot πŸ“–mathematicalWithBot
Preorder.toLT
instPreorder
Bot.bot
bot
AddLECancellable
add
Preorder.toLE
β€”addLECancellable_of_ne_bot
LT.lt.ne
addLECancellable_of_ne_bot πŸ“–mathematicalβ€”AddLECancellable
WithBot
add
instLE
β€”le_of_add_le_add_left
addLeftMono πŸ“–mathematicalβ€”AddLeftMono
WithBot
add
instLE
β€”add_bot
add_le_add_right
addLeftReflectLT πŸ“–mathematicalβ€”AddLeftReflectLT
WithBot
add
instLT
β€”add_bot
instIsEmptyFalse
lt_of_add_lt_add_left
addRightMono πŸ“–mathematicalβ€”AddRightMono
WithBot
add
instLE
β€”add_bot
add_le_add_left
addRightReflectLT πŸ“–mathematicalβ€”AddRightReflectLT
WithBot
add
instLT
β€”add_bot
instIsEmptyFalse
lt_of_add_lt_add_right
add_bot πŸ“–mathematicalβ€”WithBot
add
Bot.bot
bot
β€”β€”
add_coe_eq_bot_iff πŸ“–mathematicalβ€”WithBot
add
some
Bot.bot
bot
β€”β€”
add_eq_bot πŸ“–mathematicalβ€”WithBot
add
Bot.bot
bot
β€”add_bot
add_eq_coe πŸ“–mathematicalβ€”WithBot
add
some
β€”add_bot
add_le_add_iff_left πŸ“–mathematicalβ€”WithBot
instLE
add
β€”le_of_add_le_add_left
add_le_add_right
addLeftMono
add_le_add_iff_right πŸ“–mathematicalβ€”WithBot
instLE
add
β€”le_of_add_le_add_right
add_le_add_left
addRightMono
add_le_add_iff_right' πŸ“–mathematicalβ€”WithBot
WithTop
instLE
WithTop.instLE
add
WithTop.add
β€”β€”
add_left_cancel πŸ“–β€”WithBot
add
β€”β€”β€”
add_left_inj πŸ“–mathematicalβ€”WithBot
add
β€”CanLift.prf
canLift
add_bot
add_lt_add_iff_left πŸ“–mathematicalβ€”WithBot
instLT
add
β€”lt_of_add_lt_add_left
addLeftReflectLT
add_lt_add_left
add_lt_add_iff_right πŸ“–mathematicalβ€”WithBot
instLT
add
β€”lt_of_add_lt_add_right
addRightReflectLT
add_lt_add_right
add_lt_add_left πŸ“–mathematicalWithBot
instLT
addβ€”CanLift.prf
canLift
add_bot
add_lt_add_right
add_lt_add_of_le_of_lt πŸ“–mathematicalWithBot
Preorder.toLE
instPreorder
Preorder.toLT
addβ€”LT.lt.trans_le
add_lt_add_left
add_le_add_left
addRightMono
add_lt_add_of_lt_of_le πŸ“–mathematicalWithBot
Preorder.toLT
instPreorder
Preorder.toLE
addβ€”LT.lt.trans_le
add_lt_add_right
add_le_add_right
addLeftMono
add_lt_add_right πŸ“–mathematicalWithBot
instLT
addβ€”CanLift.prf
canLift
add_lt_add_left
add_ne_bot πŸ“–β€”β€”β€”β€”add_bot
add_right_cancel πŸ“–β€”WithBot
add
β€”β€”β€”
add_right_inj πŸ“–mathematicalβ€”WithBot
add
β€”CanLift.prf
canLift
bot_add πŸ“–mathematicalβ€”WithBot
add
Bot.bot
bot
β€”β€”
bot_lt_add πŸ“–mathematicalβ€”WithBot
instLT
Bot.bot
bot
add
β€”β€”
bot_lt_natCast πŸ“–mathematicalβ€”WithBot
instLT
Bot.bot
bot
AddMonoidWithOne.toNatCast
addMonoidWithOne
β€”bot_lt_coe
bot_lt_one πŸ“–mathematicalβ€”WithBot
instLT
Bot.bot
bot
one
β€”bot_lt_coe
bot_ne_natCast πŸ“–β€”β€”β€”β€”bot_ne_coe
bot_ne_ofNat πŸ“–β€”β€”β€”β€”bot_ne_natCast
bot_ne_one πŸ“–β€”β€”β€”β€”bot_ne_coe
bot_ne_zero πŸ“–β€”β€”β€”β€”bot_ne_coe
bot_neg πŸ“–mathematicalβ€”WithBot
instLT
Bot.bot
bot
zero
β€”bot_lt_coe
charZero πŸ“–mathematicalβ€”CharZero
WithBot
addMonoidWithOne
β€”WithTop.charZero
coe_add πŸ“–mathematicalβ€”some
WithBot
add
β€”β€”
coe_addHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
WithBot
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addZeroClass
AddMonoidHom.instFunLike
addHom
some
β€”β€”
coe_add_eq_bot_iff πŸ“–mathematicalβ€”WithBot
add
some
Bot.bot
bot
β€”β€”
coe_eq_ofNat πŸ“–mathematicalβ€”someβ€”coe_eq_coe
coe_eq_one πŸ“–mathematicalβ€”some
WithBot
one
β€”coe_eq_coe
coe_eq_zero πŸ“–mathematicalβ€”some
WithBot
zero
β€”coe_eq_coe
coe_le_one πŸ“–mathematicalβ€”WithBot
instLE
some
one
β€”coe_le_coe
coe_le_zero πŸ“–mathematicalβ€”WithBot
instLE
some
zero
β€”coe_le_coe
coe_lt_one πŸ“–mathematicalβ€”WithBot
instLT
some
one
β€”coe_lt_coe
coe_lt_zero πŸ“–mathematicalβ€”WithBot
instLT
some
zero
β€”coe_lt_coe
coe_natCast πŸ“–mathematicalβ€”some
AddMonoidWithOne.toNatCast
WithBot
addMonoidWithOne
β€”β€”
coe_nonneg πŸ“–mathematicalβ€”WithBot
instLE
zero
some
β€”coe_le_coe
coe_nsmul πŸ“–mathematicalβ€”some
AddMonoid.toNatSMul
WithBot
addMonoid
β€”AddMonoidHom.map_nsmul
coe_ofNat πŸ“–mathematicalβ€”someβ€”β€”
coe_one πŸ“–mathematicalβ€”some
WithBot
one
β€”β€”
coe_pos πŸ“–mathematicalβ€”WithBot
instLT
zero
some
β€”coe_lt_coe
coe_zero πŸ“–mathematicalβ€”some
WithBot
zero
β€”β€”
le_of_add_le_add_left πŸ“–β€”WithBot
instLE
add
β€”β€”CanLift.prf
canLift
add_bot
le_of_add_le_add_left
le_of_add_le_add_right πŸ“–β€”WithBot
instLE
add
β€”β€”CanLift.prf
canLift
le_of_add_le_add_right
map_add πŸ“–mathematicalβ€”map
DFunLike.coe
WithBot
add
β€”bot_add
add_bot
map_coe
coe_add
map_add
map_eq_natCast_iff πŸ“–mathematicalβ€”map
WithBot
AddMonoidWithOne.toNatCast
addMonoidWithOne
some
β€”map_eq_some_iff
map_eq_ofNat_iff πŸ“–mathematicalβ€”map
some
AddMonoidWithOne.toNatCast
β€”map_eq_some_iff
map_eq_one_iff πŸ“–mathematicalβ€”map
WithBot
one
some
β€”map_eq_some_iff
map_eq_zero_iff πŸ“–mathematicalβ€”map
WithBot
zero
some
β€”map_eq_some_iff
map_natCast πŸ“–mathematicalβ€”map
WithBot
AddMonoidWithOne.toNatCast
addMonoidWithOne
some
β€”map_coe
map_ofNat πŸ“–mathematicalβ€”map
some
β€”map_coe
map_one πŸ“–mathematicalβ€”map
WithBot
one
some
β€”β€”
map_zero πŸ“–mathematicalβ€”map
WithBot
zero
some
β€”β€”
natCast_eq_map_iff πŸ“–mathematicalβ€”WithBot
AddMonoidWithOne.toNatCast
addMonoidWithOne
map
some
β€”some_eq_map_iff
natCast_ne_bot πŸ“–β€”β€”β€”β€”coe_ne_bot
ofNat_eq_coe πŸ“–mathematicalβ€”someβ€”coe_eq_coe
ofNat_eq_map_iff πŸ“–mathematicalβ€”map
some
AddMonoidWithOne.toNatCast
β€”some_eq_map_iff
ofNat_ne_bot πŸ“–β€”β€”β€”β€”natCast_ne_bot
one_eq_coe πŸ“–mathematicalβ€”WithBot
one
some
β€”coe_eq_one
one_eq_map_iff πŸ“–mathematicalβ€”WithBot
one
map
some
β€”some_eq_map_iff
one_le_coe πŸ“–mathematicalβ€”WithBot
instLE
one
some
β€”coe_le_coe
one_lt_coe πŸ“–mathematicalβ€”WithBot
instLT
one
some
β€”coe_lt_coe
one_ne_bot πŸ“–β€”β€”β€”β€”coe_ne_bot
unbotD_one πŸ“–mathematicalβ€”unbotD
WithBot
one
β€”β€”
unbotD_zero πŸ“–mathematicalβ€”unbotD
WithBot
zero
β€”β€”
unbot_one πŸ“–mathematicalβ€”unbot
WithBot
one
coe_ne_bot
β€”coe_ne_bot
unbot_zero πŸ“–mathematicalβ€”unbot
WithBot
zero
coe_ne_bot
β€”coe_ne_bot
zeroLEOneClass πŸ“–mathematicalβ€”ZeroLEOneClass
WithBot
zero
one
instLE
β€”coe_le_coe
zero_le_one
zero_eq_coe πŸ“–mathematicalβ€”WithBot
zero
some
β€”coe_eq_zero
zero_eq_map_iff πŸ“–mathematicalβ€”WithBot
zero
map
some
β€”some_eq_map_iff
zero_ne_bot πŸ“–β€”β€”β€”β€”coe_ne_bot

WithTop

Definitions

NameCategoryTheorems
add πŸ“–CompOp
79 mathmath: WithBot.add_le_add_iff_right', MeasureTheory.IsStoppingTime.add, Associates.factors_mul, meromorphicOrderAt_mul, Tropical.instNoZeroDivisorsWithTop, MeasureTheory.IsStoppingTime.add_const', ENat.coe_top_add_one, addLECancellable_coe, AddHom.withTopMap_apply, instOrderedSub, contDiff_succ_iff_fderiv, AddHom.ENatMap_apply, add_eq_coe, HahnSeries.orderTop_mul_of_nonzero, MvPowerSeries.lexOrder_mul, Tropical.mul_eq_zero_iff, contDiffOn_succ_of_fderivWithin, add_lt_top, contDiffOn_succ_iff_fderiv_of_isOpen, add_lt_add_right, add_lt_add_of_lt_of_le, hasFTaylorSeriesUpToOn_succ_iff_right, existsAddOfLE, Associates.prod_add, addLeftReflectLT, untopβ‚€_add, addRightReflectLT, add_eq_top, HahnSeries.orderTop_mul_of_ne_zero, add_top, contDiffWithinAt_succ_iff_hasFDerivWithinAt', contDiffOn_succ_iff_hasFDerivWithinAt, coe_add_eq_top_iff, meromorphicOrderAt_smul, contDiffOn_succ_iff_deriv_of_isOpen, add_right_inj, tangentBundleCore.isContMDiff, contDiff_succ_iff_fderiv_apply, ENat.add_one_eq_coe_top_iff, TangentBundle.contMDiffVectorBundle, contDiffAt_succ_iff_hasFDerivAt, HahnSeries.orderTop_mul, HahnSeries.orderTop_add_le_mul, top_add, canonicallyOrderedAdd, add_lt_add, add_lt_add_iff_right, hasFTaylorSeriesUpToOn_succ_iff_left, contDiffOn_succ_iff_fderivWithin, add_coe_eq_top_iff, Padic.AddValuation.map_mul, contDiffOn_succ_iff_fderiv_apply, ENat.map_add, contDiff_succ_iff_deriv, contDiffOn_succ_iff_derivWithin, Associates.FactorSet.coe_add, addRightMono, contDiffOn_succ_iff_hasFDerivWithinAt_of_uniqueDiffOn, add_lt_add_left, minSmoothness_add, MeasureTheory.IsStoppingTime.add_const, contDiffOn_succ_of_fderiv_apply, addLeftMono, coe_add, untopD_add, MvPowerSeries.le_lexOrder_mul, addLECancellable_of_lt_top, Associates.FactorSet.sup_add_inf_eq_add, addLECancellable_of_ne_top, add_lt_add_iff_left, addLECancellable_iff_ne_top, add_le_add_iff_left, add_lt_add_of_le_of_lt, add_left_inj, contDiff_succ_iff_hasFDerivAt, MvPowerSeries.lexOrder_mul_ge, contDiffWithinAt_succ_iff_hasFDerivWithinAt, add_le_add_iff_right, map_add
addCommMonoid πŸ“–CompOp
4 mathmath: isOrderedAddMonoid, sum_eq_top, coe_sum, sum_lt_top
addCommMonoidWithOne πŸ“–CompOpβ€”
addCommSemigroup πŸ“–CompOpβ€”
addHom πŸ“–CompOp
1 mathmath: coe_addHom
addMonoid πŸ“–CompOp
3 mathmath: Associates.pow_factors, HahnSeries.orderTop_nsmul_le_orderTop_pow, coe_nsmul
addMonoidWithOne πŸ“–CompOp
89 mathmath: TangentBundle.continuousLinearMapAt_model_space, contMDiffWithinAt_vectorSpace_iff_contDiffWithinAt, ENat.some_eq_coe, charZero, MeasureTheory.smul_le_stoppedValue_hittingBtwn, untopβ‚€_natCast, contMDiff_addInvariantVectorField, ENat.natCast_le_of_coe_top_le_withTop, MeasureTheory.StronglyAdapted.isStoppingTime_upperCrossingTime, contMDiff_mulInvariantVectorField, Real.contDiffAt_rpow_const_of_le, contMDiff_infty, contDiffOn_nat_iff_continuousOn_differentiableOn_deriv, Nat.cast_withTop, contDiffWithinAt_nat, contDiffOn_infty, tangentBundle_model_space_coe_chartAt, contDiff_iff_forall_nat_le, contMDiffAt_mulInvariantVectorField, mdifferentiableAt_addInvariantVectorField, contDiff_all_iff_nat, mdifferentiable_mulInvariantVectorField, contDiffOn_nat_iff_continuousOn_differentiableOn, MeasureTheory.stoppedValue_lowerCrossingTime, contMDiff_vectorSpace_iff_contDiff, TangentBundle.coordChange_model_space, map_eq_natCast_iff, contDiff_nat_iff_iteratedDeriv, contDiffPointwiseHolderAt_iff, trivializationAt_model_space_apply, hasFTaylorSeriesUpToOn_top_iff, hasFTaylorSeriesUpTo_succ_nat_iff_right, MeasureTheory.StronglyAdapted.isStoppingTime_crossing, MeasureTheory.stoppedValue_upperCrossingTime, hasFTaylorSeriesUpToOn_succ_nat_iff_right, instIsContMDiffRiemannianBundleOfNatWithTopENat_2, natCast_eq_map_iff, MeasureTheory.smul_le_stoppedValue_hitting, tangentBundle_model_space_coe_chartAt_symm, tangentBundleModelSpaceHomeomorph_coe, tangentBundleCore_coordChange_model_space, contDiffOn_all_iff_nat, instIsManifoldMinSmoothnessOfNatWithTopENat, PeriodPair.order_weierstrassP, contDiffOn_iff_forall_nat_le, contDiffAt_succ_iff_hasFDerivAt, contDiffWithinAt_infty, tangentBundle_model_space_chartAt, contMDiffAt_iff_nat, Real.contDiffAt_rpow_const, MeasureTheory.le_sub_of_le_upcrossingsBefore, natCast_lt_top, contMDiffAt_vectorSpace_iff_contDiffAt, mdifferentiable_addInvariantVectorField, contDiffAt_infty, VectorField.contMDiffWithinAt_mpullbackWithin_extChartAt_symm, TangentBundle.symmL_model_space, contDiff_nat_iff_continuous_differentiable, contDiffWithinAt_iff_forall_nat_le, tangentBundleModelSpaceHomeomorph_coe_symm, meromorphicOrderAt_pow, hasFTaylorSeriesUpToOn_succ_iff_left, Real.contDiff_rpow_const_of_le, ContDiffPointwiseHolderAt.contDiffAt, hasFTaylorSeriesUpTo_top_iff, mdifferentiableAt_mulInvariantVectorField, contMDiffWithinAt_infty, IsManifold.instOfNatWithTopENat_2, MeasureTheory.StronglyAdapted.isStoppingTime_lowerCrossingTime, map_natCast, contDiff_infty, contMDiffAt_addInvariantVectorField, contMDiff_tangentBundleModelSpaceHomeomorph, contMDiffAt_infty, contMDiff_tangentBundleModelSpaceHomeomorph_symm, MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt, coe_natCast, ContDiffPointwiseHolderAt.zero_exponent_iff, VectorField.eventually_contMDiffWithinAt_mpullbackWithin_extChartAt_symm, IsManifold.instLEInftyCastWithTopENat, contMDiffOn_vectorSpace_iff_contDiffOn, inTangentCoordinates_model_space, contMDiffWithinAt_iff_nat, ENat.natCast_lt_of_coe_top_le_withTop, hasFTaylorSeriesUpToOn_top_iff_add, inCoordinates_tangent_bundle_core_model_space, contMDiff_snd_tangentBundle_modelSpace, contMDiffOn_infty, contDiff_succ_iff_hasFDerivAt
addSemigroup πŸ“–CompOpβ€”
addZeroClass πŸ“–CompOp
3 mathmath: AddMonoidHom.withTopMap_apply, AddMonoidHom.ENatMap_apply, coe_addHom
one πŸ“–CompOp
66 mathmath: instContMDiffVectorBundleOfNatWithTopENatTangentSpaceOfIsManifold, instLieAddGroupOfNatWithTopENat, OneHom.withTopMap_apply, instIsContMDiffRiemannianBundleOfNatWithTopENat_1, one_eq_map_iff, ENat.coe_top_add_one, contDiff_one_iff_fderiv, contMDiff_equivTangentBundleProd_symm, one_lt_top, one_lt_coe, contDiff_succ_iff_fderiv, IsContDiffImplicitAt.one_le, contDiffAt_one_iff, contDiffOn_succ_of_fderivWithin, Finset.min_one, meromorphicOrderAt_id, instContMDiffInvβ‚€OfNatWithTopENat, contDiffOn_succ_iff_fderiv_of_isOpen, hasFTaylorSeriesUpToOn_succ_iff_right, instIsManifoldMinSmoothnessOfNatWithTopENat_1, instContMDiffVectorBundleOfNatWithTopENat, zeroLEOneClass, coe_one, ENat.one_le_iff_ne_zero_withTop, contDiffWithinAt_succ_iff_hasFDerivWithinAt', contDiffOn_succ_iff_hasFDerivWithinAt, coe_eq_one, IsManifold.instLEInftyOfNatWithTopENat_1, contDiffOn_succ_iff_deriv_of_isOpen, instContMDiffMulOfNatWithTopENat, Manifold.riemannianEDist_def, tangentBundleCore.isContMDiff, contDiff_succ_iff_fderiv_apply, ENat.add_one_eq_coe_top_iff, TangentBundle.contMDiffVectorBundle, contDiffAt_succ_iff_hasFDerivAt, coe_lt_one, map_eq_one_iff, coe_le_one, differentiableWithinAt_localInvariantProp, contDiff_one_iff_hasFDerivAt, contMDiff_equivTangentBundleProd, instIsManifoldOfNatWithTopENatOfMinSmoothness_1, hasFTaylorSeriesUpToOn_succ_iff_left, contDiffOn_succ_iff_fderivWithin, contDiffOn_succ_iff_fderiv_apply, one_eq_coe, contDiff_succ_iff_deriv, IsManifold.instOfNatWithTopENat_1, contDiffOn_succ_iff_derivWithin, instContMDiffAddOfNatWithTopENat, contDiffOn_succ_iff_hasFDerivWithinAt_of_uniqueDiffOn, untop_one, one_le_coe, contDiffOn_succ_of_fderiv_apply, untopD_one, contDiff_norm_rpow, exists_continuousLinearEquiv_fderiv_symm_eq, Manifold.exists_lt_of_riemannianEDist_lt, exists_continuousLinearEquiv_fderivWithin_symm_eq, Manifold.exists_lt_locally_constant_of_riemannianEDist_lt, instLieGroupOfNatWithTopENat, map_one, contDiff_succ_iff_hasFDerivAt, contDiff_one_iff_deriv, contDiffWithinAt_succ_iff_hasFDerivWithinAt
zero πŸ“–CompOp
95 mathmath: ValueDistribution.logCounting_zero, instContMDiffAddOfNatWithTopENatOfContinuousAdd, tendsto_zero_iff_meromorphicOrderAt_pos, MeromorphicOn.codiscrete_setOf_meromorphicOrderAt_eq_zero_or_top, ValueDistribution.proximity_zero, meromorphicOrderAt_const_ofNat, Finset.min_zero, tendsto_cobounded_iff_meromorphicOrderAt_neg, meromorphicOrderAt_const, Padic.AddValuation.map_one, mul_def, top_mul', ValueDistribution.logCounting_zero_mul_le, ValueDistribution.proximity_zero_mul_le, HahnSeries.orderTop_sub_pos, MeromorphicNFAt.meromorphicOrderAt_nonneg_iff_analyticAt, instLieGroupOfNatWithTopENatOfIsTopologicalGroup, untopβ‚€_zero, instContMDiffInvβ‚€OfNatWithTopENatOfContinuousInvβ‚€, contDiff_zero, ValueDistribution.proximity_pow_zero, IsManifold.instLEInftyOfNatWithTopENat_2, ZeroHom.withTopMap_apply, ValueDistribution.logCounting_coe_eq_logCounting_sub_const_zero, ValueDistribution.proximity_coe_eq_proximity_sub_const_zero, ValueDistribution.logCounting_mul_zero_eventuallyLE, HahnSeries.orderTop_one, ENat.map_natCast_eq_zero, ValueDistribution.proximity_inv, instLieAddGroupOfNatWithTopENatOfIsTopologicalAddGroup, hasFTaylorSeriesUpTo_zero_iff, coe_le_zero, untopβ‚€_nonneg, untop_zero, coe_eq_zero, HahnSeries.zero_lt_orderTop_of_order, Associates.count_zero, contDiffWithinAt_zero, contMDiff_zero_iff, meromorphicOrderAt_const_natCast, AnalyticAt.meromorphicOrderAt_nonneg, hasFTaylorSeriesUpToOn_zero_iff, tendsto_nhds_iff_meromorphicOrderAt_nonneg, ValueDistribution.proximity_mul_zero_le, map_zero, meromorphicNFAt_iff_analyticAt_or, coe_zero, zeroLEOneClass, Real.contDiffAt_arcsin_iff, contDiffOn_zero, untopD_zero, HahnSeries.unit_aux, ValueDistribution.characteristic_mul_zero_eventuallyLE, ValueDistribution.characteristic_pow_zero, tendsto_ne_zero_iff_meromorphicOrderAt_eq_zero, contDiffGroupoid_zero_eq, mul_top', ValueDistribution.characteristic_mul_zero_le, locallyFinsuppWithin.logCounting_divisor, ValueDistribution.logCounting_zero_mul_eventually_le, ValueDistribution.proximity_zero_of_complexValued, ValueDistribution.characteristic_zero_mul_eventually_le, map_eq_zero_iff, zero_eq_map_iff, instContMDiffVectorBundleOfNatWithTopENat_1, ENat.map_natCast_nonneg, ValueDistribution.characteristic_zero_mul_le, HahnSeries.SummableFamily.powers_toFun, instIsContMDiffRiemannianBundleOfNatWithTopENat, coe_nonneg, HahnSeries.orderTop_self_sub_one_pos_iff, ValueDistribution.logCounting_pow_zero, contDiffAt_zero, instContMDiffMulOfNatWithTopENatOfContinuousMul, ValueDistribution.logCounting_zero_sub_logCounting_top_eq_circleAverage_sub_const, top_pos, coe_pos, HahnSeries.zero_lt_orderTop_iff, meromorphicOrderAt_of_not_meromorphicAt, meromorphicOrderAt_const_intCast, MeromorphicNFAt.meromorphicOrderAt_eq_zero_iff, untopβ‚€_eq_zero, HahnSeries.zero_le_orderTop_iff, instNoZeroDivisors, zero_eq_coe, ValueDistribution.log_counting_zero_sub_logCounting_top, contMDiffOn_zero_iff, HahnSeries.mem_orderTopSubOnePos_iff, Associates.factors_one, ContDiffPointwiseHolderAt.zero_order_iff, ValueDistribution.logCounting_inv, Real.contDiffAt_arccos_iff, IsManifold.instOfNatWithTopENat, coe_lt_zero, ValueDistribution.logCounting_mul_zero_le

Theorems

NameKindAssumesProvesValidatesDepends On
addLECancellable_coe πŸ“–mathematicalβ€”AddLECancellable
WithTop
add
instLE
some
β€”addLECancellable_of_ne_top
coe_ne_top
addLECancellable_iff_ne_top πŸ“–mathematicalβ€”AddLECancellable
WithTop
add
Preorder.toLE
instPreorder
β€”LT.lt.not_ge
coe_lt_top
add_top
addLECancellable_of_ne_top
addLECancellable_of_lt_top πŸ“–mathematicalWithTop
Preorder.toLT
instPreorder
Top.top
top
AddLECancellable
add
Preorder.toLE
β€”addLECancellable_of_ne_top
LT.lt.ne
addLECancellable_of_ne_top πŸ“–mathematicalβ€”AddLECancellable
WithTop
add
instLE
β€”le_of_add_le_add_left
addLeftMono πŸ“–mathematicalβ€”AddLeftMono
WithTop
add
instLE
β€”add_top
add_le_add_right
addLeftReflectLT πŸ“–mathematicalβ€”AddLeftReflectLT
WithTop
add
instLT
β€”add_top
instIsEmptyFalse
lt_of_add_lt_add_left
addRightMono πŸ“–mathematicalβ€”AddRightMono
WithTop
add
instLE
β€”add_top
add_le_add_left
addRightReflectLT πŸ“–mathematicalβ€”AddRightReflectLT
WithTop
add
instLT
β€”add_top
instIsEmptyFalse
lt_of_add_lt_add_right
add_coe_eq_top_iff πŸ“–mathematicalβ€”WithTop
add
some
Top.top
top
β€”β€”
add_eq_coe πŸ“–mathematicalβ€”WithTop
add
some
β€”add_top
add_eq_top πŸ“–mathematicalβ€”WithTop
add
Top.top
top
β€”add_top
add_le_add_iff_left πŸ“–mathematicalβ€”WithTop
instLE
add
β€”le_of_add_le_add_left
add_le_add_right
addLeftMono
add_le_add_iff_right πŸ“–mathematicalβ€”WithTop
instLE
add
β€”le_of_add_le_add_right
add_le_add_left
addRightMono
add_left_cancel πŸ“–β€”WithTop
add
β€”β€”β€”
add_left_inj πŸ“–mathematicalβ€”WithTop
add
β€”CanLift.prf
canLift
add_top
add_lt_add πŸ“–mathematicalWithTop
Preorder.toLT
instPreorder
addβ€”LT.lt.trans_le
add_lt_add_left
LT.lt.ne_top
add_top
LT.lt.le
add_lt_add_right
coe_ne_top
add_lt_add_iff_left πŸ“–mathematicalβ€”WithTop
instLT
add
β€”lt_of_add_lt_add_left
addLeftReflectLT
add_lt_add_left
add_lt_add_iff_right πŸ“–mathematicalβ€”WithTop
instLT
add
β€”lt_of_add_lt_add_right
addRightReflectLT
add_lt_add_right
add_lt_add_left πŸ“–mathematicalWithTop
instLT
addβ€”CanLift.prf
canLift
add_top
add_lt_add_right
add_lt_add_of_le_of_lt πŸ“–mathematicalWithTop
Preorder.toLE
instPreorder
Preorder.toLT
addβ€”LT.lt.trans_le
add_lt_add_left
add_le_add_left
addRightMono
add_lt_add_of_lt_of_le πŸ“–mathematicalWithTop
Preorder.toLT
instPreorder
Preorder.toLE
addβ€”LT.lt.trans_le
add_lt_add_right
add_le_add_right
addLeftMono
add_lt_add_right πŸ“–mathematicalWithTop
instLT
addβ€”CanLift.prf
canLift
add_lt_add_left
add_lt_top πŸ“–mathematicalβ€”WithTop
instLT
add
Top.top
top
β€”β€”
add_ne_top πŸ“–β€”β€”β€”β€”add_top
add_right_cancel πŸ“–β€”WithTop
add
β€”β€”β€”
add_right_inj πŸ“–mathematicalβ€”WithTop
add
β€”CanLift.prf
canLift
add_top πŸ“–mathematicalβ€”WithTop
add
Top.top
top
β€”β€”
charZero πŸ“–mathematicalβ€”CharZero
WithTop
addMonoidWithOne
β€”coe_eq_coe
Nat.cast_injective
coe_add πŸ“–mathematicalβ€”some
WithTop
add
β€”β€”
coe_addHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
WithTop
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addZeroClass
AddMonoidHom.instFunLike
addHom
some
β€”β€”
coe_add_eq_top_iff πŸ“–mathematicalβ€”WithTop
add
some
Top.top
top
β€”β€”
coe_eq_ofNat πŸ“–mathematicalβ€”someβ€”coe_eq_coe
coe_eq_one πŸ“–mathematicalβ€”some
WithTop
one
β€”coe_eq_coe
coe_eq_zero πŸ“–mathematicalβ€”some
WithTop
zero
β€”coe_eq_coe
coe_le_one πŸ“–mathematicalβ€”WithTop
instLE
some
one
β€”coe_le_coe
coe_le_zero πŸ“–mathematicalβ€”WithTop
instLE
some
zero
β€”coe_le_coe
coe_lt_one πŸ“–mathematicalβ€”WithTop
instLT
some
one
β€”coe_lt_coe
coe_lt_zero πŸ“–mathematicalβ€”WithTop
instLT
some
zero
β€”coe_lt_coe
coe_natCast πŸ“–mathematicalβ€”some
AddMonoidWithOne.toNatCast
WithTop
addMonoidWithOne
β€”β€”
coe_ne_one πŸ“–β€”β€”β€”β€”Iff.ne
coe_eq_one
coe_ne_zero πŸ“–β€”β€”β€”β€”Iff.ne
coe_eq_zero
coe_nonneg πŸ“–mathematicalβ€”WithTop
instLE
zero
some
β€”coe_le_coe
coe_nsmul πŸ“–mathematicalβ€”some
AddMonoid.toNatSMul
WithTop
addMonoid
β€”β€”
coe_ofNat πŸ“–mathematicalβ€”someβ€”β€”
coe_one πŸ“–mathematicalβ€”some
WithTop
one
β€”β€”
coe_pos πŸ“–mathematicalβ€”WithTop
instLT
zero
some
β€”coe_lt_coe
coe_zero πŸ“–mathematicalβ€”some
WithTop
zero
β€”β€”
existsAddOfLE πŸ“–mathematicalβ€”ExistsAddOfLE
WithTop
add
instLE
β€”ExistsAddOfLE.exists_add_of_le
coe_le_coe
not_top_le_coe
le_of_add_le_add_left πŸ“–β€”WithTop
instLE
add
β€”β€”CanLift.prf
canLift
add_top
le_of_add_le_add_left
le_of_add_le_add_right πŸ“–β€”WithTop
instLE
add
β€”β€”CanLift.prf
canLift
le_of_add_le_add_right
map_add πŸ“–mathematicalβ€”map
DFunLike.coe
WithTop
add
β€”top_add
add_top
map_coe
coe_add
map_add
map_eq_natCast_iff πŸ“–mathematicalβ€”map
WithTop
AddMonoidWithOne.toNatCast
addMonoidWithOne
some
β€”map_eq_some_iff
map_eq_ofNat_iff πŸ“–mathematicalβ€”map
some
AddMonoidWithOne.toNatCast
β€”map_eq_some_iff
map_eq_one_iff πŸ“–mathematicalβ€”map
WithTop
one
some
β€”map_eq_some_iff
map_eq_zero_iff πŸ“–mathematicalβ€”map
WithTop
zero
some
β€”map_eq_some_iff
map_natCast πŸ“–mathematicalβ€”map
WithTop
AddMonoidWithOne.toNatCast
addMonoidWithOne
some
β€”map_coe
map_ofNat πŸ“–mathematicalβ€”map
some
β€”map_coe
map_one πŸ“–mathematicalβ€”map
WithTop
one
some
β€”β€”
map_zero πŸ“–mathematicalβ€”map
WithTop
zero
some
β€”β€”
natCast_eq_map_iff πŸ“–mathematicalβ€”WithTop
AddMonoidWithOne.toNatCast
addMonoidWithOne
map
some
β€”some_eq_map_iff
natCast_lt_top πŸ“–mathematicalβ€”WithTop
instLT
AddMonoidWithOne.toNatCast
addMonoidWithOne
Top.top
top
β€”coe_lt_top
natCast_ne_top πŸ“–β€”β€”β€”β€”coe_ne_top
ofNat_eq_coe πŸ“–mathematicalβ€”someβ€”coe_eq_coe
ofNat_eq_map_iff πŸ“–mathematicalβ€”map
some
AddMonoidWithOne.toNatCast
β€”some_eq_map_iff
ofNat_ne_top πŸ“–β€”β€”β€”β€”natCast_ne_top
one_eq_coe πŸ“–mathematicalβ€”WithTop
one
some
β€”coe_eq_one
one_eq_map_iff πŸ“–mathematicalβ€”WithTop
one
map
some
β€”some_eq_map_iff
one_le_coe πŸ“–mathematicalβ€”WithTop
instLE
one
some
β€”coe_le_coe
one_lt_coe πŸ“–mathematicalβ€”WithTop
instLT
one
some
β€”coe_lt_coe
one_lt_top πŸ“–mathematicalβ€”WithTop
instLT
one
Top.top
top
β€”coe_lt_top
one_ne_top πŸ“–β€”β€”β€”β€”coe_ne_top
top_add πŸ“–mathematicalβ€”WithTop
add
Top.top
top
β€”β€”
top_ne_natCast πŸ“–β€”β€”β€”β€”top_ne_coe
top_ne_ofNat πŸ“–β€”β€”β€”β€”top_ne_natCast
top_ne_one πŸ“–β€”β€”β€”β€”top_ne_coe
top_ne_zero πŸ“–β€”β€”β€”β€”top_ne_coe
top_pos πŸ“–mathematicalβ€”WithTop
instLT
zero
Top.top
top
β€”coe_lt_top
untopD_one πŸ“–mathematicalβ€”untopD
WithTop
one
β€”β€”
untopD_zero πŸ“–mathematicalβ€”untopD
WithTop
zero
β€”β€”
untop_one πŸ“–mathematicalβ€”untop
WithTop
one
coe_ne_top
β€”coe_ne_top
untop_zero πŸ“–mathematicalβ€”untop
WithTop
zero
coe_ne_top
β€”coe_ne_top
zeroLEOneClass πŸ“–mathematicalβ€”ZeroLEOneClass
WithTop
zero
one
instLE
β€”coe_le_coe
zero_le_one
zero_eq_coe πŸ“–mathematicalβ€”WithTop
zero
some
β€”coe_eq_zero
zero_eq_map_iff πŸ“–mathematicalβ€”WithTop
zero
map
some
β€”some_eq_map_iff
zero_ne_top πŸ“–β€”β€”β€”β€”coe_ne_top

ZeroHom

Definitions

NameCategoryTheorems
withBotMap πŸ“–CompOp
1 mathmath: withBotMap_apply
withTopMap πŸ“–CompOp
1 mathmath: withTopMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
withBotMap_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
WithBot
WithBot.zero
funLike
withBotMap
WithBot.map
β€”β€”
withTopMap_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
WithTop
WithTop.zero
funLike
withTopMap
WithTop.map
β€”β€”

---

← Back to Index