Adjoining top/bottom elements to ordered monoids. #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
instance
WithTop.addRightMono
{α : Type u}
[Add α]
[LE α]
[AddRightMono α]
:
AddRightMono (WithTop α)
theorem
WithTop.add_lt_add
{α : Type u}
[Add α]
{w x y z : WithTop α}
[Preorder α]
[AddLeftStrictMono α]
[AddRightStrictMono α]
(xz : x < z)
(yw : y < w)
:
theorem
WithTop.add_le_add_iff_left
{α : Type u}
[Add α]
{x y z : WithTop α}
[LE α]
[AddLeftMono α]
[AddLeftReflectLE α]
(hx : x ≠ ⊤)
:
theorem
WithTop.add_le_add_iff_right
{α : Type u}
[Add α]
{x y z : WithTop α}
[LE α]
[AddRightMono α]
[AddRightReflectLE α]
(hz : z ≠ ⊤)
:
theorem
WithTop.add_lt_add_iff_left
{α : Type u}
[Add α]
{x y z : WithTop α}
[LT α]
[AddLeftStrictMono α]
[AddLeftReflectLT α]
(hx : x ≠ ⊤)
:
theorem
WithTop.add_lt_add_iff_right
{α : Type u}
[Add α]
{x y z : WithTop α}
[LT α]
[AddRightStrictMono α]
[AddRightReflectLT α]
(hz : z ≠ ⊤)
:
theorem
WithTop.add_lt_add_of_le_of_lt
{α : Type u}
[Add α]
{w x y z : WithTop α}
[Preorder α]
[AddLeftStrictMono α]
[AddRightMono α]
(hw : w ≠ ⊤)
(hwy : w ≤ y)
(hxz : x < z)
:
theorem
WithTop.add_lt_add_of_lt_of_le
{α : Type u}
[Add α]
{w x y z : WithTop α}
[Preorder α]
[AddLeftMono α]
[AddRightStrictMono α]
(hx : x ≠ ⊤)
(hwy : w < y)
(hxz : x ≤ z)
:
theorem
WithTop.addLECancellable_of_ne_top
{α : Type u}
[Add α]
{x : WithTop α}
[LE α]
[AddLeftReflectLE α]
(hx : x ≠ ⊤)
:
theorem
WithTop.addLECancellable_of_lt_top
{α : Type u}
[Add α]
{x : WithTop α}
[Preorder α]
[AddLeftReflectLE α]
(hx : x < ⊤)
:
theorem
WithTop.addLECancellable_iff_ne_top
{α : Type u}
[Add α]
{x : WithTop α}
[Nonempty α]
[Preorder α]
[AddLeftReflectLE α]
:
Equations
Equations
Equations
Equations
@[simp]
Equations
Equations
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
WithTop.map_ofNat
{α : Type u}
{β : Type v}
[AddMonoidWithOne α]
{f : α → β}
(n : ℕ)
[n.AtLeastTwo]
:
@[simp]
theorem
WithTop.map_eq_ofNat_iff
{α : Type u}
{β : Type v}
[AddMonoidWithOne α]
{f : β → α}
{n : ℕ}
[n.AtLeastTwo]
{a : WithTop β}
:
theorem
WithTop.ofNat_eq_map_iff
{α : Type u}
{β : Type v}
[AddMonoidWithOne α]
{f : β → α}
{n : ℕ}
[n.AtLeastTwo]
{a : WithTop β}
:
Equations
instance
WithTop.existsAddOfLE
{α : Type u}
[LE α]
[Add α]
[ExistsAddOfLE α]
:
ExistsAddOfLE (WithTop α)
A version of WithTop.map for OneHoms.
Equations
Instances For
A version of WithTop.map for ZeroHoms
Equations
Instances For
A version of WithTop.map for AddHoms.
Equations
Instances For
def
AddMonoidHom.withTopMap
{M : Type u_1}
{N : Type u_2}
[AddZeroClass M]
[AddZeroClass N]
(f : M →+ N)
:
A version of WithTop.map for AddMonoidHoms.
Equations
Instances For
@[simp]
theorem
AddMonoidHom.withTopMap_apply
{M : Type u_1}
{N : Type u_2}
[AddZeroClass M]
[AddZeroClass N]
(f : M →+ N)
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
instance
WithBot.addRightMono
{α : Type u}
[Add α]
[LE α]
[AddRightMono α]
:
AddRightMono (WithBot α)
theorem
WithBot.add_le_add_iff_left
{α : Type u}
[Add α]
{x y z : WithBot α}
[LE α]
[AddLeftMono α]
[AddLeftReflectLE α]
(hx : x ≠ ⊥)
:
theorem
WithBot.add_le_add_iff_right
{α : Type u}
[Add α]
{x y z : WithBot α}
[LE α]
[AddRightMono α]
[AddRightReflectLE α]
(hz : z ≠ ⊥)
:
theorem
WithBot.add_lt_add_iff_left
{α : Type u}
[Add α]
{x y z : WithBot α}
[LT α]
[AddLeftStrictMono α]
[AddLeftReflectLT α]
(hx : x ≠ ⊥)
:
theorem
WithBot.add_lt_add_iff_right
{α : Type u}
[Add α]
{x y z : WithBot α}
[LT α]
[AddRightStrictMono α]
[AddRightReflectLT α]
(hz : z ≠ ⊥)
:
theorem
WithBot.add_lt_add_of_le_of_lt
{α : Type u}
[Add α]
{w x y z : WithBot α}
[Preorder α]
[AddLeftStrictMono α]
[AddRightMono α]
(hw : w ≠ ⊥)
(hwy : w ≤ y)
(hxz : x < z)
:
theorem
WithBot.add_lt_add_of_lt_of_le
{α : Type u}
[Add α]
{w x y z : WithBot α}
[Preorder α]
[AddLeftMono α]
[AddRightStrictMono α]
(hx : x ≠ ⊥)
(hwy : w < y)
(hxz : x ≤ z)
:
theorem
WithBot.addLECancellable_of_ne_bot
{α : Type u}
[Add α]
{x : WithBot α}
[LE α]
[AddLeftReflectLE α]
(hx : x ≠ ⊥)
:
theorem
WithBot.addLECancellable_of_lt_bot
{α : Type u}
[Add α]
{x : WithBot α}
[Preorder α]
[AddLeftReflectLE α]
(hx : x < ⊥)
:
theorem
WithBot.addLECancellable_iff_ne_bot
{α : Type u}
[Add α]
{x : WithBot α}
[Nonempty α]
[Preorder α]
[AddLeftReflectLE α]
:
theorem
WithBot.add_le_add_iff_right'
{α : Type u_1}
[Add α]
[LE α]
[AddRightMono α]
[AddRightReflectLE α]
{a b c : WithBot (WithTop α)}
(hc : c ≠ ⊥)
(hc' : c ≠ ⊤)
:
Addition in WithBot (WithTop α) is right cancellative provided the element
being cancelled is not ⊤ or ⊥.
Equations
Equations
Equations
Equations
@[simp]
Equations
Equations
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
WithBot.map_ofNat
{α : Type u}
{β : Type v}
[AddMonoidWithOne α]
{f : α → β}
(n : ℕ)
[n.AtLeastTwo]
:
@[simp]
theorem
WithBot.map_eq_ofNat_iff
{α : Type u}
{β : Type v}
[AddMonoidWithOne α]
{f : β → α}
{n : ℕ}
[n.AtLeastTwo]
{a : WithBot β}
:
theorem
WithBot.ofNat_eq_map_iff
{α : Type u}
{β : Type v}
[AddMonoidWithOne α]
{f : β → α}
{n : ℕ}
[n.AtLeastTwo]
{a : WithBot β}
:
@[simp]
Equations
A version of WithBot.map for OneHoms.
Equations
Instances For
A version of WithBot.map for ZeroHoms
Equations
Instances For
A version of WithBot.map for AddHoms.
Equations
Instances For
def
AddMonoidHom.withBotMap
{M : Type u_1}
{N : Type u_2}
[AddZeroClass M]
[AddZeroClass N]
(f : M →+ N)
:
A version of WithBot.map for AddMonoidHoms.
Equations
Instances For
@[simp]
theorem
AddMonoidHom.withBotMap_apply
{M : Type u_1}
{N : Type u_2}
[AddZeroClass M]
[AddZeroClass N]
(f : M →+ N)
: