Documentation Verification Report

UpperLower

πŸ“ Source: Mathlib/Algebra/Order/UpperLower.lean

Statistics

MetricCount
DefinitionsaddCommSemigroup, commSemigroup, instAdd, instAddAction, instAddCommMonoid, instCommMonoid, instDiv, instMul, instMulAction, instOne, instSMul, instSub, instVAdd, instZero, addCommSemigroup, commSemigroup, instAdd, instAddAction, instAddCommMonoid, instCommMonoid, instDiv, instMul, instMulAction, instOne, instSMul, instSub, instVAdd, instZero
28
Theoremsadd_left, add_right, div_left, div_right, inv, mul_left, mul_right, neg, smul, smul_subset, sub_left, sub_right, vadd, vadd_subset, add_left, add_right, div_left, div_right, inv, mul_left, mul_right, neg, smul, smul_subset, sub_left, sub_right, vadd, vadd_subset, Iic_one, Iic_zero, coe_add, coe_div, coe_mul, coe_sub, smul, vadd, Ici_one, Ici_zero, coe_add, coe_div, coe_mul, coe_one, coe_sub, coe_zero, add_lowerClosure, add_upperClosure, lowerClosure_add, lowerClosure_add_distrib, lowerClosure_mul, lowerClosure_mul_distrib, lowerClosure_one, lowerClosure_smul, lowerClosure_vadd, lowerClosure_zero, mul_lowerClosure, mul_upperClosure, upperClosure_add, upperClosure_add_distrib, upperClosure_mul, upperClosure_mul_distrib, upperClosure_one, upperClosure_smul, upperClosure_vadd, upperClosure_zero
64
Total92

IsLowerSet

Theorems

NameKindAssumesProvesValidatesDepends On
add_left πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”IsUpperSet.add_left
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
toDual
add_right πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”IsUpperSet.add_right
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
toDual
div_left πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
IsUpperSet
Set
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
β€”IsUpperSet.div_left
OrderDual.isOrderedMonoid
CommGroup.mul_comm
toDual
div_right πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
β€”IsUpperSet.div_right
OrderDual.isOrderedMonoid
CommGroup.mul_comm
toDual
inv πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
IsUpperSet
Set
Set.inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
β€”inv_le_inv'
mul_left πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”IsUpperSet.mul_left
OrderDual.isOrderedMonoid
CommGroup.mul_comm
toDual
mul_right πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”IsUpperSet.mul_right
OrderDual.isOrderedMonoid
CommGroup.mul_comm
toDual
neg πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
IsUpperSet
Set
Set.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”neg_le_neg
smul πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulAction.toSemigroupAction
Monoid.toMulAction
β€”image
IsOrderedMonoid.toMulLeftMono
smul_subset πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Set
Set.instHasSubset
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
β€”Set.smul_set_subset_iff
mul_le_of_le_one_left'
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
sub_left πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
IsUpperSet
Set
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”IsUpperSet.sub_left
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
toDual
sub_right πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”IsUpperSet.sub_right
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
toDual
vadd πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”image
IsOrderedAddMonoid.toAddLeftMono
vadd_subset πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”Set.vadd_set_subset_iff
add_le_of_nonpos_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono

IsUpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
add_left πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”vadd_eq_add
Set.iUnion_vadd_set
isUpperSet_iUnionβ‚‚
vadd
add_right πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”add_comm
add_left
div_left πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
IsLowerSet
Set
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
β€”div_eq_mul_inv
IsLowerSet.mul_left
inv
div_right πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
β€”div_eq_mul_inv
mul_right
inv πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
IsLowerSet
Set
Set.inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
β€”inv_le_inv'
mul_left πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”smul_eq_mul
Set.iUnion_smul_set
isUpperSet_iUnionβ‚‚
smul
mul_right πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”mul_comm
mul_left
neg πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
IsLowerSet
Set
Set.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”neg_le_neg
smul πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulAction.toSemigroupAction
Monoid.toMulAction
β€”image
IsOrderedMonoid.toMulLeftMono
smul_subset πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Set
Set.instHasSubset
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
β€”Set.smul_set_subset_iff
le_mul_of_one_le_left'
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
sub_left πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
IsLowerSet
Set
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”sub_eq_add_neg
IsLowerSet.add_left
neg
sub_right πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Set
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”sub_eq_add_neg
add_right
vadd πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”image
IsOrderedAddMonoid.toAddLeftMono
vadd_subset πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”Set.vadd_set_subset_iff
le_add_of_nonneg_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono

LowerSet

Definitions

NameCategoryTheorems
addCommSemigroup πŸ“–CompOpβ€”
commSemigroup πŸ“–CompOpβ€”
instAdd πŸ“–CompOp
2 mathmath: coe_add, lowerClosure_add_distrib
instAddAction πŸ“–CompOpβ€”
instAddCommMonoid πŸ“–CompOpβ€”
instCommMonoid πŸ“–CompOpβ€”
instDiv πŸ“–CompOp
1 mathmath: coe_div
instMul πŸ“–CompOp
2 mathmath: lowerClosure_mul_distrib, coe_mul
instMulAction πŸ“–CompOpβ€”
instOne πŸ“–CompOp
2 mathmath: lowerClosure_one, Iic_one
instSMul πŸ“–CompOp
1 mathmath: lowerClosure_smul
instSub πŸ“–CompOp
1 mathmath: coe_sub
instVAdd πŸ“–CompOp
1 mathmath: lowerClosure_vadd
instZero πŸ“–CompOp
2 mathmath: lowerClosure_zero, Iic_zero

Theorems

NameKindAssumesProvesValidatesDepends On
Iic_one πŸ“–mathematicalβ€”Iic
PartialOrder.toPreorder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
LowerSet
Preorder.toLE
instOne
β€”β€”
Iic_zero πŸ“–mathematicalβ€”Iic
PartialOrder.toPreorder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LowerSet
Preorder.toLE
instZero
β€”β€”
coe_add πŸ“–mathematicalβ€”SetLike.coe
LowerSet
Preorder.toLE
PartialOrder.toPreorder
instSetLike
instAdd
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
coe_div πŸ“–mathematicalβ€”SetLike.coe
LowerSet
Preorder.toLE
PartialOrder.toPreorder
instSetLike
instDiv
Set
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
β€”β€”
coe_mul πŸ“–mathematicalβ€”SetLike.coe
LowerSet
Preorder.toLE
PartialOrder.toPreorder
instSetLike
instMul
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”β€”
coe_sub πŸ“–mathematicalβ€”SetLike.coe
LowerSet
Preorder.toLE
PartialOrder.toPreorder
instSetLike
instSub
Set
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”

Set.OrdConnected

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–mathematicalβ€”Set.OrdConnected
PartialOrder.toPreorder
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulAction.toSemigroupAction
Monoid.toMulAction
β€”upperClosure_inter_lowerClosure
Set.smul_set_inter
inter
IsUpperSet.ordConnected
IsUpperSet.smul
UpperSet.upper
IsLowerSet.ordConnected
IsLowerSet.smul
LowerSet.lower
vadd πŸ“–mathematicalβ€”Set.OrdConnected
PartialOrder.toPreorder
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”upperClosure_inter_lowerClosure
Set.vadd_set_inter
inter
IsUpperSet.ordConnected
IsUpperSet.vadd
UpperSet.upper
IsLowerSet.ordConnected
IsLowerSet.vadd
LowerSet.lower

UpperSet

Definitions

NameCategoryTheorems
addCommSemigroup πŸ“–CompOpβ€”
commSemigroup πŸ“–CompOpβ€”
instAdd πŸ“–CompOp
2 mathmath: coe_add, upperClosure_add_distrib
instAddAction πŸ“–CompOpβ€”
instAddCommMonoid πŸ“–CompOpβ€”
instCommMonoid πŸ“–CompOpβ€”
instDiv πŸ“–CompOp
1 mathmath: coe_div
instMul πŸ“–CompOp
2 mathmath: coe_mul, upperClosure_mul_distrib
instMulAction πŸ“–CompOpβ€”
instOne πŸ“–CompOp
3 mathmath: upperClosure_one, coe_one, Ici_one
instSMul πŸ“–CompOp
1 mathmath: upperClosure_smul
instSub πŸ“–CompOp
1 mathmath: coe_sub
instVAdd πŸ“–CompOp
1 mathmath: upperClosure_vadd
instZero πŸ“–CompOp
3 mathmath: upperClosure_zero, Ici_zero, coe_zero

Theorems

NameKindAssumesProvesValidatesDepends On
Ici_one πŸ“–mathematicalβ€”Ici
PartialOrder.toPreorder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
UpperSet
Preorder.toLE
instOne
β€”β€”
Ici_zero πŸ“–mathematicalβ€”Ici
PartialOrder.toPreorder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
UpperSet
Preorder.toLE
instZero
β€”β€”
coe_add πŸ“–mathematicalβ€”SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
instSetLike
instAdd
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
coe_div πŸ“–mathematicalβ€”SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
instSetLike
instDiv
Set
Set.div
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
β€”β€”
coe_mul πŸ“–mathematicalβ€”SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
instSetLike
instMul
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”β€”
coe_one πŸ“–mathematicalβ€”SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
instSetLike
instOne
Set.Ici
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
β€”β€”
coe_sub πŸ“–mathematicalβ€”SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
instSetLike
instSub
Set
Set.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
coe_zero πŸ“–mathematicalβ€”SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
instSetLike
instZero
Set.Ici
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
add_lowerClosure πŸ“–mathematicalβ€”Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SetLike.coe
LowerSet
Preorder.toLE
PartialOrder.toPreorder
LowerSet.instSetLike
lowerClosure
β€”Set.iUnion_vadd_set
lowerClosure_iUnion
iSup_congr_Prop
lowerClosure_vadd
LowerSet.coe_iSupβ‚‚
add_upperClosure πŸ“–mathematicalβ€”Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
UpperSet.instSetLike
upperClosure
β€”Set.iUnion_vadd_set
upperClosure_iUnion
iInf_congr_Prop
upperClosure_vadd
UpperSet.coe_iInfβ‚‚
lowerClosure_add πŸ“–mathematicalβ€”Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SetLike.coe
LowerSet
Preorder.toLE
PartialOrder.toPreorder
LowerSet.instSetLike
lowerClosure
β€”add_comm
add_lowerClosure
lowerClosure_add_distrib πŸ“–mathematicalβ€”lowerClosure
PartialOrder.toPreorder
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LowerSet
Preorder.toLE
LowerSet.instAdd
β€”SetLike.coe_injective
LowerSet.coe_add
add_lowerClosure
lowerClosure_add
LowerSet.lowerClosure
lowerClosure_mul πŸ“–mathematicalβ€”Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
SetLike.coe
LowerSet
Preorder.toLE
PartialOrder.toPreorder
LowerSet.instSetLike
lowerClosure
β€”mul_comm
mul_lowerClosure
lowerClosure_mul_distrib πŸ“–mathematicalβ€”lowerClosure
PartialOrder.toPreorder
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
LowerSet
Preorder.toLE
LowerSet.instMul
β€”SetLike.coe_injective
LowerSet.coe_mul
mul_lowerClosure
lowerClosure_mul
LowerSet.lowerClosure
lowerClosure_one πŸ“–mathematicalβ€”lowerClosure
PartialOrder.toPreorder
Set
Set.one
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
LowerSet
Preorder.toLE
LowerSet.instOne
β€”lowerClosure_singleton
lowerClosure_smul πŸ“–mathematicalβ€”lowerClosure
PartialOrder.toPreorder
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulAction.toSemigroupAction
Monoid.toMulAction
LowerSet
Preorder.toLE
LowerSet.instSMul
β€”lowerClosure_image
IsOrderedMonoid.toMulLeftMono
lowerClosure_vadd πŸ“–mathematicalβ€”lowerClosure
PartialOrder.toPreorder
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
LowerSet
Preorder.toLE
LowerSet.instVAdd
β€”lowerClosure_image
IsOrderedAddMonoid.toAddLeftMono
lowerClosure_zero πŸ“–mathematicalβ€”lowerClosure
PartialOrder.toPreorder
Set
Set.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LowerSet
Preorder.toLE
LowerSet.instZero
β€”lowerClosure_singleton
mul_lowerClosure πŸ“–mathematicalβ€”Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
SetLike.coe
LowerSet
Preorder.toLE
PartialOrder.toPreorder
LowerSet.instSetLike
lowerClosure
β€”lowerClosure_iUnion
iSup_congr_Prop
lowerClosure_smul
LowerSet.coe_iSupβ‚‚
mul_upperClosure πŸ“–mathematicalβ€”Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
UpperSet.instSetLike
upperClosure
β€”upperClosure_iUnion
iInf_congr_Prop
upperClosure_smul
UpperSet.coe_iInfβ‚‚
upperClosure_add πŸ“–mathematicalβ€”Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
UpperSet.instSetLike
upperClosure
β€”add_comm
add_upperClosure
upperClosure_add_distrib πŸ“–mathematicalβ€”upperClosure
PartialOrder.toPreorder
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
UpperSet
Preorder.toLE
UpperSet.instAdd
β€”SetLike.coe_injective
UpperSet.coe_add
add_upperClosure
upperClosure_add
UpperSet.upperClosure
upperClosure_mul πŸ“–mathematicalβ€”Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
UpperSet.instSetLike
upperClosure
β€”mul_comm
mul_upperClosure
upperClosure_mul_distrib πŸ“–mathematicalβ€”upperClosure
PartialOrder.toPreorder
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
UpperSet
Preorder.toLE
UpperSet.instMul
β€”SetLike.coe_injective
UpperSet.coe_mul
mul_upperClosure
upperClosure_mul
UpperSet.upperClosure
upperClosure_one πŸ“–mathematicalβ€”upperClosure
PartialOrder.toPreorder
Set
Set.one
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
UpperSet
Preorder.toLE
UpperSet.instOne
β€”upperClosure_singleton
upperClosure_smul πŸ“–mathematicalβ€”upperClosure
PartialOrder.toPreorder
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulAction.toSemigroupAction
Monoid.toMulAction
UpperSet
Preorder.toLE
UpperSet.instSMul
β€”upperClosure_image
IsOrderedMonoid.toMulLeftMono
upperClosure_vadd πŸ“–mathematicalβ€”upperClosure
PartialOrder.toPreorder
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
UpperSet
Preorder.toLE
UpperSet.instVAdd
β€”upperClosure_image
IsOrderedAddMonoid.toAddLeftMono
upperClosure_zero πŸ“–mathematicalβ€”upperClosure
PartialOrder.toPreorder
Set
Set.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
UpperSet
Preorder.toLE
UpperSet.instZero
β€”upperClosure_singleton

---

← Back to Index