Documentation

Mathlib.Algebra.Order.UpperLower

Algebraic operations on upper/lower sets #

Upper/lower sets are preserved under pointwise algebraic operations in ordered groups.

theorem IsUpperSet.smul_subset {α : Type u_1} [CommMonoid α] [PartialOrder α] [IsOrderedMonoid α] {s : Set α} {x : α} (hs : IsUpperSet s) (hx : 1 x) :
x s s
theorem IsUpperSet.vadd_subset {α : Type u_1} [AddCommMonoid α] [PartialOrder α] [IsOrderedAddMonoid α] {s : Set α} {x : α} (hs : IsUpperSet s) (hx : 0 x) :
x +ᵥ s s
theorem IsLowerSet.smul_subset {α : Type u_1} [CommMonoid α] [PartialOrder α] [IsOrderedMonoid α] {s : Set α} {x : α} (hs : IsLowerSet s) (hx : x 1) :
x s s
theorem IsLowerSet.vadd_subset {α : Type u_1} [AddCommMonoid α] [PartialOrder α] [IsOrderedAddMonoid α] {s : Set α} {x : α} (hs : IsLowerSet s) (hx : x 0) :
x +ᵥ s s
theorem IsUpperSet.smul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {s : Set α} {a : α} (hs : IsUpperSet s) :
theorem IsUpperSet.vadd {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {s : Set α} {a : α} (hs : IsUpperSet s) :
theorem IsLowerSet.smul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {s : Set α} {a : α} (hs : IsLowerSet s) :
theorem IsLowerSet.vadd {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {s : Set α} {a : α} (hs : IsLowerSet s) :
theorem Set.OrdConnected.smul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {s : Set α} {a : α} (hs : s.OrdConnected) :
theorem Set.OrdConnected.vadd {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {s : Set α} {a : α} (hs : s.OrdConnected) :
theorem IsUpperSet.mul_left {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {s t : Set α} (ht : IsUpperSet t) :
theorem IsUpperSet.mul_right {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {s t : Set α} (hs : IsUpperSet s) :
theorem IsLowerSet.mul_left {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {s t : Set α} (ht : IsLowerSet t) :
theorem IsLowerSet.mul_right {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {s t : Set α} (hs : IsLowerSet s) :
theorem IsUpperSet.div_left {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {s t : Set α} (ht : IsUpperSet t) :
theorem IsUpperSet.div_right {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {s t : Set α} (hs : IsUpperSet s) :
theorem IsLowerSet.div_left {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {s t : Set α} (ht : IsLowerSet t) :
theorem IsLowerSet.div_right {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {s t : Set α} (hs : IsLowerSet s) :
instance UpperSet.instOne {α : Type u_1} [CommGroup α] [PartialOrder α] :
Equations
    instance UpperSet.instZero {α : Type u_1} [AddCommGroup α] [PartialOrder α] :
    Equations
      instance UpperSet.instMul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] :
      Equations
        instance UpperSet.instDiv {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] :
        Equations
          instance UpperSet.instSMul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] :
          SMul α (UpperSet α)
          Equations
            @[simp]
            theorem UpperSet.coe_one {α : Type u_1} [CommGroup α] [PartialOrder α] :
            1 = Set.Ici 1
            @[simp]
            theorem UpperSet.coe_zero {α : Type u_1} [AddCommGroup α] [PartialOrder α] :
            0 = Set.Ici 0
            @[simp]
            theorem UpperSet.coe_mul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] (s t : UpperSet α) :
            ↑(s * t) = s * t
            @[simp]
            theorem UpperSet.coe_add {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] (s t : UpperSet α) :
            ↑(s + t) = s + t
            @[simp]
            theorem UpperSet.coe_div {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] (s t : UpperSet α) :
            ↑(s / t) = s / t
            @[simp]
            theorem UpperSet.coe_sub {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] (s t : UpperSet α) :
            ↑(s - t) = s - t
            @[simp]
            theorem UpperSet.Ici_one {α : Type u_1} [CommGroup α] [PartialOrder α] :
            Ici 1 = 1
            @[simp]
            theorem UpperSet.Ici_zero {α : Type u_1} [AddCommGroup α] [PartialOrder α] :
            Ici 0 = 0
            instance LowerSet.instOne {α : Type u_1} [CommGroup α] [PartialOrder α] :
            Equations
              instance LowerSet.instZero {α : Type u_1} [AddCommGroup α] [PartialOrder α] :
              Equations
                instance LowerSet.instMul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] :
                Equations
                  instance LowerSet.instDiv {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] :
                  Equations
                    instance LowerSet.instSMul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] :
                    SMul α (LowerSet α)
                    Equations
                      @[simp]
                      theorem LowerSet.coe_mul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] (s t : LowerSet α) :
                      ↑(s * t) = s * t
                      @[simp]
                      theorem LowerSet.coe_add {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] (s t : LowerSet α) :
                      ↑(s + t) = s + t
                      @[simp]
                      theorem LowerSet.coe_div {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] (s t : LowerSet α) :
                      ↑(s / t) = s / t
                      @[simp]
                      theorem LowerSet.coe_sub {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] (s t : LowerSet α) :
                      ↑(s - t) = s - t
                      @[simp]
                      theorem LowerSet.Iic_one {α : Type u_1} [CommGroup α] [PartialOrder α] :
                      Iic 1 = 1
                      @[simp]
                      theorem LowerSet.Iic_zero {α : Type u_1} [AddCommGroup α] [PartialOrder α] :
                      Iic 0 = 0
                      @[simp]
                      theorem upperClosure_one {α : Type u_1} [CommGroup α] [PartialOrder α] :
                      @[simp]
                      theorem lowerClosure_one {α : Type u_1} [CommGroup α] [PartialOrder α] :
                      @[simp]
                      theorem upperClosure_smul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] (s : Set α) (a : α) :
                      @[simp]
                      theorem upperClosure_vadd {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] (s : Set α) (a : α) :
                      @[simp]
                      theorem lowerClosure_smul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] (s : Set α) (a : α) :
                      @[simp]
                      theorem lowerClosure_vadd {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] (s : Set α) (a : α) :
                      theorem mul_upperClosure {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] (s t : Set α) :
                      s * (upperClosure t) = (upperClosure (s * t))
                      theorem add_upperClosure {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] (s t : Set α) :
                      s + (upperClosure t) = (upperClosure (s + t))
                      theorem mul_lowerClosure {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] (s t : Set α) :
                      s * (lowerClosure t) = (lowerClosure (s * t))
                      theorem add_lowerClosure {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] (s t : Set α) :
                      s + (lowerClosure t) = (lowerClosure (s + t))
                      theorem upperClosure_mul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] (s t : Set α) :
                      (upperClosure s) * t = (upperClosure (s * t))
                      theorem upperClosure_add {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] (s t : Set α) :
                      (upperClosure s) + t = (upperClosure (s + t))
                      theorem lowerClosure_mul {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] (s t : Set α) :
                      (lowerClosure s) * t = (lowerClosure (s * t))
                      theorem lowerClosure_add {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] (s t : Set α) :
                      (lowerClosure s) + t = (lowerClosure (s + t))