MulOpposite
📁 Source: Mathlib/Algebra/Ring/Subring/MulOpposite.lean
Statistics
Subring
Definitions
| Name | Category | Theorems |
|---|---|---|
addEquivOp 📖 | CompOp | |
mopRingEquivOp 📖 | CompOp | |
op 📖 | CompOp | 31 mathmath:addEquivOp_apply_coe, coe_op, op_le_op_iff, le_op_iff, op_sup, mopRingEquivOp_apply_coe, op_injective, op_bot, op_sSup, op_top, mopRingEquivOp_symm_apply, op_iInf, op_sInf, unop_sInf, mem_op, op_eq_bot, op_le_iff, op_inj, op_toSubsemiring, Subalgebra.op_toSubring, ringEquivOpMop_symm_apply_coe, op_iSup, opEquiv_apply, op_closure, op_inf, op_eq_top, unop_op, unop_sSup, ringEquivOpMop_apply, op_unop, addEquivOp_symm_apply_coe |
opEquiv 📖 | CompOp | |
ringEquivOpMop 📖 | CompOp | |
unop 📖 | CompOp | 25 mathmath:coe_unop, le_op_iff, unop_injective, unop_top, op_sSup, Subalgebra.unop_toSubring, op_sInf, unop_eq_top, unop_sInf, mem_unop, unop_le_unop_iff, unop_inf, op_le_iff, unop_eq_bot, unop_bot, unop_inj, unop_closure, unop_toSubsemiring, unop_sup, opEquiv_symm_apply, unop_iInf, unop_iSup, unop_op, unop_sSup, op_unop |
Theorems
---