Documentation

Mathlib.Algebra.Ring.Subring.MulOpposite

Subring of opposite rings #

For every ring R, we construct an equivalence between subrings of R and that of Rแตแต’แต–.

Pull a subring back to an opposite subring along MulOpposite.unop

Equations
    Instances For
      @[simp]
      theorem Subring.coe_op {R : Type u_2} [Ring R] (S : Subring R) :

      Pull an opposite subring back to a subring along MulOpposite.op

      Equations
        Instances For
          @[simp]
          theorem Subring.unop_op {R : Type u_2} [Ring R] (S : Subring R) :
          S.op.unop = S

          Lattice results #

          theorem Subring.op_le_iff {R : Type u_2} [Ring R] {Sโ‚ : Subring R} {Sโ‚‚ : Subring Rแตแต’แต–} :
          Sโ‚.op โ‰ค Sโ‚‚ โ†” Sโ‚ โ‰ค Sโ‚‚.unop
          theorem Subring.le_op_iff {R : Type u_2} [Ring R] {Sโ‚ : Subring Rแตแต’แต–} {Sโ‚‚ : Subring R} :
          Sโ‚ โ‰ค Sโ‚‚.op โ†” Sโ‚.unop โ‰ค Sโ‚‚
          @[simp]
          theorem Subring.op_le_op_iff {R : Type u_2} [Ring R] {Sโ‚ Sโ‚‚ : Subring R} :
          Sโ‚.op โ‰ค Sโ‚‚.op โ†” Sโ‚ โ‰ค Sโ‚‚
          @[simp]
          theorem Subring.unop_le_unop_iff {R : Type u_2} [Ring R] {Sโ‚ Sโ‚‚ : Subring Rแตแต’แต–} :
          Sโ‚.unop โ‰ค Sโ‚‚.unop โ†” Sโ‚ โ‰ค Sโ‚‚

          A subring S of R determines a subring S.op of the opposite ring Rแตแต’แต–.

          Equations
            Instances For
              @[simp]
              theorem Subring.opEquiv_apply {R : Type u_2} [Ring R] (S : Subring R) :
              @[simp]
              theorem Subring.op_inj {R : Type u_2} [Ring R] {S T : Subring R} :
              S.op = T.op โ†” S = T
              theorem Subring.op_sup {R : Type u_2} [Ring R] (Sโ‚ Sโ‚‚ : Subring R) :
              (Sโ‚ โŠ” Sโ‚‚).op = Sโ‚.op โŠ” Sโ‚‚.op
              theorem Subring.unop_sup {R : Type u_2} [Ring R] (Sโ‚ Sโ‚‚ : Subring Rแตแต’แต–) :
              (Sโ‚ โŠ” Sโ‚‚).unop = Sโ‚.unop โŠ” Sโ‚‚.unop
              theorem Subring.op_inf {R : Type u_2} [Ring R] (Sโ‚ Sโ‚‚ : Subring R) :
              (Sโ‚ โŠ“ Sโ‚‚).op = Sโ‚.op โŠ“ Sโ‚‚.op
              theorem Subring.unop_inf {R : Type u_2} [Ring R] (Sโ‚ Sโ‚‚ : Subring Rแตแต’แต–) :
              (Sโ‚ โŠ“ Sโ‚‚).unop = Sโ‚.unop โŠ“ Sโ‚‚.unop
              theorem Subring.op_iSup {ฮน : Sort u_1} {R : Type u_2} [Ring R] (S : ฮน โ†’ Subring R) :
              (iSup S).op = โจ† (i : ฮน), (S i).op
              theorem Subring.unop_iSup {ฮน : Sort u_1} {R : Type u_2} [Ring R] (S : ฮน โ†’ Subring Rแตแต’แต–) :
              (iSup S).unop = โจ† (i : ฮน), (S i).unop
              theorem Subring.op_iInf {ฮน : Sort u_1} {R : Type u_2} [Ring R] (S : ฮน โ†’ Subring R) :
              (iInf S).op = โจ… (i : ฮน), (S i).op
              theorem Subring.unop_iInf {ฮน : Sort u_1} {R : Type u_2} [Ring R] (S : ฮน โ†’ Subring Rแตแต’แต–) :
              (iInf S).unop = โจ… (i : ฮน), (S i).unop
              def Subring.addEquivOp {R : Type u_2} [Ring R] (S : Subring R) :
              โ†ฅS โ‰ƒ+ โ†ฅS.op

              Bijection between a subring S and its opposite.

              Equations
                Instances For
                  @[simp]
                  theorem Subring.addEquivOp_symm_apply_coe {R : Type u_2} [Ring R] (S : Subring R) (b : โ†ฅS.op) :
                  โ†‘(S.addEquivOp.symm b) = MulOpposite.unop โ†‘b
                  @[simp]
                  theorem Subring.addEquivOp_apply_coe {R : Type u_2} [Ring R] (S : Subring R) (a : โ†ฅS.toSubmonoid) :
                  โ†‘(S.addEquivOp a) = MulOpposite.op โ†‘a
                  def Subring.ringEquivOpMop {R : Type u_2} [Ring R] (S : Subring R) :

                  Bijection between a subring S and MulOpposite of its opposite.

                  Equations
                    Instances For
                      @[simp]
                      theorem Subring.ringEquivOpMop_apply {R : Type u_2} [Ring R] (S : Subring R) (aโœ : โ†ฅS.toSubsemiring) :
                      S.ringEquivOpMop aโœ = MulOpposite.op (S.addEquivOp aโœ)
                      @[simp]
                      theorem Subring.ringEquivOpMop_symm_apply_coe {R : Type u_2} [Ring R] (S : Subring R) (aโœ : (โ†ฅS.op)แตแต’แต–) :
                      โ†‘(S.ringEquivOpMop.symm aโœ) = MulOpposite.unop โ†‘(MulOpposite.unop aโœ)
                      def Subring.mopRingEquivOp {R : Type u_2} [Ring R] (S : Subring R) :

                      Bijection between MulOpposite of a subring S and its opposite.

                      Equations
                        Instances For
                          @[simp]
                          theorem Subring.mopRingEquivOp_symm_apply {R : Type u_2} [Ring R] (S : Subring R) (aโœ : โ†ฅS.op) :
                          @[simp]
                          theorem Subring.mopRingEquivOp_apply_coe {R : Type u_2} [Ring R] (S : Subring R) (aโœ : (โ†ฅS.toSubsemiring)แตแต’แต–) :
                          โ†‘(S.mopRingEquivOp aโœ) = MulOpposite.op โ†‘(MulOpposite.unop aโœ)