Subring of opposite rings #
For every ring R, we construct an equivalence between subrings of R and that of Rแตแตแต.
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Lattice results #
@[simp]
@[simp]
Bijection between a subring S and its opposite.
Equations
Instances For
@[simp]
@[simp]
theorem
Subring.addEquivOp_apply_coe
{R : Type u_2}
[Ring R]
(S : Subring R)
(a : โฅS.toSubmonoid)
:
@[simp]
theorem
Subring.ringEquivOpMop_apply
{R : Type u_2}
[Ring R]
(S : Subring R)
(aโ : โฅS.toSubsemiring)
:
@[simp]
theorem
Subring.mopRingEquivOp_symm_apply
{R : Type u_2}
[Ring R]
(S : Subring R)
(aโ : โฅS.op)
:
@[simp]
theorem
Subring.mopRingEquivOp_apply_coe
{R : Type u_2}
[Ring R]
(S : Subring R)
(aโ : (โฅS.toSubsemiring)แตแตแต)
: