Documentation

Mathlib.Algebra.Ring.Subsemiring.MulOpposite

Subsemiring of opposite semirings #

For every semiring R, we construct an equivalence between subsemirings of R and that of Rแตแต’แต–.

Pull a subsemiring back to an opposite subsemiring along MulOpposite.unop

Equations
    Instances For

      Pull an opposite subsemiring back to a subsemiring along MulOpposite.op

      Equations
        Instances For

          Lattice results #

          theorem Subsemiring.op_le_iff {R : Type u_2} [NonAssocSemiring R] {Sโ‚ : Subsemiring R} {Sโ‚‚ : Subsemiring Rแตแต’แต–} :
          Sโ‚.op โ‰ค Sโ‚‚ โ†” Sโ‚ โ‰ค Sโ‚‚.unop
          theorem Subsemiring.le_op_iff {R : Type u_2} [NonAssocSemiring R] {Sโ‚ : Subsemiring Rแตแต’แต–} {Sโ‚‚ : Subsemiring R} :
          Sโ‚ โ‰ค Sโ‚‚.op โ†” Sโ‚.unop โ‰ค Sโ‚‚
          @[simp]
          theorem Subsemiring.op_le_op_iff {R : Type u_2} [NonAssocSemiring R] {Sโ‚ Sโ‚‚ : Subsemiring R} :
          Sโ‚.op โ‰ค Sโ‚‚.op โ†” Sโ‚ โ‰ค Sโ‚‚
          @[simp]
          theorem Subsemiring.unop_le_unop_iff {R : Type u_2} [NonAssocSemiring R] {Sโ‚ Sโ‚‚ : Subsemiring Rแตแต’แต–} :
          Sโ‚.unop โ‰ค Sโ‚‚.unop โ†” Sโ‚ โ‰ค Sโ‚‚

          A subsemiring S of R determines a subsemiring S.op of the opposite ring Rแตแต’แต–.

          Equations
            Instances For
              @[simp]
              theorem Subsemiring.op_inj {R : Type u_2} [NonAssocSemiring R] {S T : Subsemiring R} :
              S.op = T.op โ†” S = T
              theorem Subsemiring.op_sup {R : Type u_2} [NonAssocSemiring R] (Sโ‚ Sโ‚‚ : Subsemiring R) :
              (Sโ‚ โŠ” Sโ‚‚).op = Sโ‚.op โŠ” Sโ‚‚.op
              theorem Subsemiring.unop_sup {R : Type u_2} [NonAssocSemiring R] (Sโ‚ Sโ‚‚ : Subsemiring Rแตแต’แต–) :
              (Sโ‚ โŠ” Sโ‚‚).unop = Sโ‚.unop โŠ” Sโ‚‚.unop
              theorem Subsemiring.op_inf {R : Type u_2} [NonAssocSemiring R] (Sโ‚ Sโ‚‚ : Subsemiring R) :
              (Sโ‚ โŠ“ Sโ‚‚).op = Sโ‚.op โŠ“ Sโ‚‚.op
              theorem Subsemiring.unop_inf {R : Type u_2} [NonAssocSemiring R] (Sโ‚ Sโ‚‚ : Subsemiring Rแตแต’แต–) :
              (Sโ‚ โŠ“ Sโ‚‚).unop = Sโ‚.unop โŠ“ Sโ‚‚.unop
              theorem Subsemiring.op_iSup {ฮน : Sort u_1} {R : Type u_2} [NonAssocSemiring R] (S : ฮน โ†’ Subsemiring R) :
              (iSup S).op = โจ† (i : ฮน), (S i).op
              theorem Subsemiring.unop_iSup {ฮน : Sort u_1} {R : Type u_2} [NonAssocSemiring R] (S : ฮน โ†’ Subsemiring Rแตแต’แต–) :
              (iSup S).unop = โจ† (i : ฮน), (S i).unop
              theorem Subsemiring.op_iInf {ฮน : Sort u_1} {R : Type u_2} [NonAssocSemiring R] (S : ฮน โ†’ Subsemiring R) :
              (iInf S).op = โจ… (i : ฮน), (S i).op
              theorem Subsemiring.unop_iInf {ฮน : Sort u_1} {R : Type u_2} [NonAssocSemiring R] (S : ฮน โ†’ Subsemiring Rแตแต’แต–) :
              (iInf S).unop = โจ… (i : ฮน), (S i).unop
              def Subsemiring.addEquivOp {R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) :
              โ†ฅS โ‰ƒ+ โ†ฅS.op

              Bijection between a subsemiring S and its opposite.

              Equations
                Instances For
                  @[simp]
                  theorem Subsemiring.addEquivOp_symm_apply_coe {R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) (b : โ†ฅS.op) :
                  โ†‘(S.addEquivOp.symm b) = MulOpposite.unop โ†‘b
                  @[simp]
                  theorem Subsemiring.addEquivOp_apply_coe {R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) (a : โ†ฅS.toSubmonoid) :
                  โ†‘(S.addEquivOp a) = MulOpposite.op โ†‘a

                  Bijection between a subsemiring S and MulOpposite of its opposite.

                  Equations
                    Instances For
                      @[simp]
                      theorem Subsemiring.ringEquivOpMop_apply {R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) (aโœ : โ†ฅS) :
                      S.ringEquivOpMop aโœ = MulOpposite.op (S.addEquivOp aโœ)

                      Bijection between MulOpposite of a subsemiring S and its opposite.

                      Equations
                        Instances For
                          @[simp]
                          theorem Subsemiring.mopRingEquivOp_symm_apply {R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) (aโœ : โ†ฅS.op) :
                          @[simp]
                          theorem Subsemiring.mopRingEquivOp_apply_coe {R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) (aโœ : (โ†ฅS)แตแต’แต–) :
                          โ†‘(S.mopRingEquivOp aโœ) = MulOpposite.op โ†‘(MulOpposite.unop aโœ)