Subsemiring of opposite semirings #
For every semiring R, we construct an equivalence between subsemirings of R and that of Rแตแตแต.
@[simp]
@[simp]
@[simp]
theorem
Subsemiring.mem_op
{R : Type u_2}
[NonAssocSemiring R]
{x : Rแตแตแต}
{S : Subsemiring R}
:
Pull an opposite subsemiring back to a subsemiring along MulOpposite.op
Equations
Instances For
@[simp]
@[simp]
theorem
Subsemiring.unop_toSubmonoid
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring Rแตแตแต)
:
@[simp]
theorem
Subsemiring.mem_unop
{R : Type u_2}
[NonAssocSemiring R]
{x : R}
{S : Subsemiring Rแตแตแต}
:
@[simp]
@[simp]
Lattice results #
theorem
Subsemiring.op_le_iff
{R : Type u_2}
[NonAssocSemiring R]
{Sโ : Subsemiring R}
{Sโ : Subsemiring Rแตแตแต}
:
theorem
Subsemiring.le_op_iff
{R : Type u_2}
[NonAssocSemiring R]
{Sโ : Subsemiring Rแตแตแต}
{Sโ : Subsemiring R}
:
@[simp]
@[simp]
theorem
Subsemiring.unop_le_unop_iff
{R : Type u_2}
[NonAssocSemiring R]
{Sโ Sโ : Subsemiring Rแตแตแต}
:
A subsemiring S of R determines a subsemiring S.op of the opposite ring Rแตแตแต.
Equations
Instances For
@[simp]
theorem
Subsemiring.opEquiv_symm_apply
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring Rแตแตแต)
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Subsemiring.unop_sup
{R : Type u_2}
[NonAssocSemiring R]
(Sโ Sโ : Subsemiring Rแตแตแต)
:
theorem
Subsemiring.unop_inf
{R : Type u_2}
[NonAssocSemiring R]
(Sโ Sโ : Subsemiring Rแตแตแต)
:
theorem
Subsemiring.unop_sSup
{R : Type u_2}
[NonAssocSemiring R]
(S : Set (Subsemiring Rแตแตแต))
:
theorem
Subsemiring.unop_sInf
{R : Type u_2}
[NonAssocSemiring R]
(S : Set (Subsemiring Rแตแตแต))
:
theorem
Subsemiring.op_iSup
{ฮน : Sort u_1}
{R : Type u_2}
[NonAssocSemiring R]
(S : ฮน โ Subsemiring R)
:
theorem
Subsemiring.unop_iSup
{ฮน : Sort u_1}
{R : Type u_2}
[NonAssocSemiring R]
(S : ฮน โ Subsemiring Rแตแตแต)
:
theorem
Subsemiring.op_iInf
{ฮน : Sort u_1}
{R : Type u_2}
[NonAssocSemiring R]
(S : ฮน โ Subsemiring R)
:
theorem
Subsemiring.unop_iInf
{ฮน : Sort u_1}
{R : Type u_2}
[NonAssocSemiring R]
(S : ฮน โ Subsemiring Rแตแตแต)
:
Bijection between a subsemiring S and its opposite.
Equations
Instances For
@[simp]
theorem
Subsemiring.addEquivOp_symm_apply_coe
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring R)
(b : โฅS.op)
:
@[simp]
theorem
Subsemiring.addEquivOp_apply_coe
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring R)
(a : โฅS.toSubmonoid)
:
Bijection between a subsemiring S and MulOpposite of its opposite.
Equations
Instances For
@[simp]
theorem
Subsemiring.ringEquivOpMop_apply
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring R)
(aโ : โฅS)
:
@[simp]
theorem
Subsemiring.ringEquivOpMop_symm_apply_coe
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring R)
(aโ : (โฅS.op)แตแตแต)
:
Bijection between MulOpposite of a subsemiring S and its opposite.
Equations
Instances For
@[simp]
theorem
Subsemiring.mopRingEquivOp_symm_apply
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring R)
(aโ : โฅS.op)
:
@[simp]
theorem
Subsemiring.mopRingEquivOp_apply_coe
{R : Type u_2}
[NonAssocSemiring R]
(S : Subsemiring R)
(aโ : (โฅS)แตแตแต)
: