Documentation Verification Report

LinearMap

πŸ“ Source: Mathlib/Algebra/Star/LinearMap.lean

Statistics

MetricCount
DefinitionsconvIntrinsicStarRing, intrinsicInvolutiveStar, intrinsicStar, intrinsicStarAddMonoid, intrinsicStar, convIntrinsicStarRingCommSemiring
6
TheoremsisSelfAdjoint, isSelfAdjoint_iff_map_star, isSelfAdjoint_iff_toMatrix', starLinearEquiv_eq_arrowCongr, intrinsicStarModule, intrinsicStar_apply, intrinsicStar_comp, intrinsicStar_comp', intrinsicStar_convMul, intrinsicStar_eq_comp, intrinsicStar_id, intrinsicStar_lTensor, intrinsicStar_mul', intrinsicStar_mulLeft, intrinsicStar_mulRight, intrinsicStar_rTensor, intrinsicStar_single, intrinsicStar_smulRight, intrinsicStar_toSpanSingleton, intrinsicStar_zero, isSelfAdjoint_iff_map_star, toMatrix'_intrinsicStar, isSelfAdjoint_toLin'_iff, intrinsicStar_toLin', intrinsicStar, isUnit_intrinsicStar_iff, mem_eigenspace_intrinsicStar_iff, spectrum_intrinsicStar, intrinsicStar_comul, intrinsicStar_comul_commSemiring, isSelfAdjoint, intrinsicStar_map, star_map_apply_eq_map_intrinsicStar
33
Total39

IntrinsicStar.StarHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
isSelfAdjoint πŸ“–mathematicalβ€”IsSelfAdjoint
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.intrinsicStar
WithConv.toConv
SemilinearMapClass.semilinearMap
β€”LinearMap.IntrinsicStar.isSelfAdjoint_iff_map_star
StarHomClass.map_star

LinearMap

Definitions

NameCategoryTheorems
convIntrinsicStarRing πŸ“–CompOpβ€”
intrinsicInvolutiveStar πŸ“–CompOpβ€”
intrinsicStar πŸ“–CompOp
30 mathmath: intrinsicStar_mulRight, Module.End.spectrum_intrinsicStar, Matrix.intrinsicStar_toLin', intrinsicStar_toSpanSingleton, Module.End.mem_eigenspace_intrinsicStar_iff, Pi.intrinsicStar_comul_commSemiring, intrinsicStar_mul', intrinsicStar_zero, IntrinsicStar.isSelfAdjoint_iff_map_star, intrinsicStar_comp', intrinsicStar_rTensor, TensorProduct.intrinsicStar_map, Matrix.IntrinsicStar.isSelfAdjoint_toLin'_iff, toMatrix'_intrinsicStar, intrinsicStar_id, intrinsicStar_mulLeft, intrinsicStar_lTensor, intrinsicStarModule, intrinsicStar_single, intrinsicStar_smulRight, IntrinsicStar.isSelfAdjoint_iff_toMatrix', intrinsicStar_apply, isSelfAdjoint_iff_map_star, IntrinsicStar.StarHomClass.isSelfAdjoint, Module.End.isUnit_intrinsicStar_iff, StarHomClass.isSelfAdjoint, intrinsicStar_comp, TensorProduct.star_map_apply_eq_map_intrinsicStar, Module.End.IsUnit.intrinsicStar, intrinsicStar_eq_comp
intrinsicStarAddMonoid πŸ“–CompOp
1 mathmath: IntrinsicStar.starLinearEquiv_eq_arrowCongr

Theorems

NameKindAssumesProvesValidatesDepends On
intrinsicStarModule πŸ“–mathematicalβ€”StarModule
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
InvolutiveStar.toStar
intrinsicStar
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
WithConv.instAddMonoid
AddCommMonoid.toAddMonoid
addCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
WithConv.instDistribMulAction
instDistribMulAction
Module.toDistribMulAction
β€”WithConv.ext
ext
StarModule.star_smul
intrinsicStar_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
WithConv.ofConv
Star.star
WithConv
intrinsicStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
β€”β€”
intrinsicStar_comp πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
intrinsicStar
WithConv.toConv
comp
RingHomCompTriple.ids
WithConv.ofConv
β€”WithConv.ext
RingHomCompTriple.ids
ext
star_star
intrinsicStar_comp' πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
intrinsicStar
WithConv.toConv
comp
RingHomCompTriple.ids
WithConv.ofConv
β€”intrinsicStar_comp
intrinsicStar_convMul πŸ“–mathematicalStar.star
WithConv
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
intrinsicStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
TensorProduct.instStarAddMonoid
TensorProduct.instStarModule
WithConv.toConv
CoalgebraStruct.comul
comp
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
TensorProduct.comm
convMulβ€”TensorProduct.instStarModule
RingHomCompTriple.ids
RingHomInvPair.ids
intrinsicStar_comp'
comp.congr_simp
intrinsicStar_mul'
TensorProduct.intrinsicStar_map
comp_assoc
RingHomCompTriple.right_ids
TensorProduct.map_comp_comm_eq
WithConv.ext
ext
TensorProduct.comm_comm
intrinsicStar_eq_comp πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
intrinsicStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
WithConv.toConv
comp
starRingEnd
RingHomInvPair.triplesβ‚‚
RingHomInvPair.instStarRingEnd
LinearEquiv.toLinearMap
starLinearEquiv
RingHomCompTriple.right_ids
WithConv.ofConv
β€”β€”
intrinsicStar_id πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
intrinsicStar
WithConv.toConv
id
β€”WithConv.ext
ext
star_star
intrinsicStar_lTensor πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
intrinsicStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
TensorProduct.instStarAddMonoid
TensorProduct.instStarModule
WithConv.toConv
lTensor
WithConv.ofConv
β€”WithConv.ext
TensorProduct.instStarModule
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
TensorProduct.isScalarTower
ext
IsScalarTower.to_smulCommClass
star_star
intrinsicStar_mul' πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
TensorProduct.addCommMonoid
TensorProduct.instModule
intrinsicStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
TensorProduct.instStarAddMonoid
TensorProduct.instStarModule
WithConv.toConv
mul'
comp
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
TensorProduct.comm
β€”WithConv.ext
TensorProduct.instStarModule
RingHomCompTriple.ids
RingHomInvPair.ids
TensorProduct.ext'
StarMul.star_mul
star_star
intrinsicStar_mulLeft πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
intrinsicStar
StarRing.toStarAddMonoid
WithConv.toConv
mulLeft
mulRight
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
β€”WithConv.ext
ext
StarMul.star_mul
star_star
intrinsicStar_mulRight πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
intrinsicStar
StarRing.toStarAddMonoid
WithConv.toConv
mulRight
mulLeft
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
β€”star_eq_iff_star_eq
intrinsicStar_mulLeft
star_star
intrinsicStar_rTensor πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
intrinsicStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
TensorProduct.instStarAddMonoid
TensorProduct.instStarModule
WithConv.toConv
rTensor
WithConv.ofConv
β€”WithConv.ext
TensorProduct.instStarModule
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
TensorProduct.isScalarTower
ext
IsScalarTower.to_smulCommClass
star_star
intrinsicStar_single πŸ“–mathematicalStarModule
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
StarRing.toStarAddMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Star.star
WithConv
LinearMap
RingHom.id
Pi.addCommMonoid
Pi.module
intrinsicStar
Pi.instStarAddMonoidForall
Pi.instStarModuleForall
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
WithConv.toConv
single
β€”WithConv.ext
Pi.instStarModuleForall
ext
star_zero
star_star
intrinsicStar_smulRight πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
intrinsicStar
StarAddMonoid.toInvolutiveStar
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
WithConv.toConv
smulRight
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
WithConv.ofConv
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
InvolutiveStar.toStar
β€”WithConv.ext
IsScalarTower.left
ext
StarModule.star_smul
intrinsicStar_toSpanSingleton πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
intrinsicStar
StarAddMonoid.toInvolutiveStar
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
WithConv.toConv
toSpanSingleton
InvolutiveStar.toStar
AddCommMonoid.toAddMonoid
β€”WithConv.ext
ext_ring
StarModule.star_smul
star_star
one_smul
intrinsicStar_zero πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
intrinsicStar
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
WithConv.instAddMonoid
AddCommMonoid.toAddMonoid
addCommMonoid
β€”star_zero
isSelfAdjoint_iff_map_star πŸ“–mathematicalβ€”IsSelfAdjoint
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
intrinsicStar
DFunLike.coe
instFunLike
WithConv.ofConv
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
β€”IntrinsicStar.isSelfAdjoint_iff_map_star
toMatrix'_intrinsicStar πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
Matrix
addCommMonoid
Matrix.addCommMonoid
module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
Matrix.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toMatrix'
WithConv.ofConv
Star.star
WithConv
intrinsicStar
StarAddMonoid.toInvolutiveStar
StarRing.toStarAddMonoid
Pi.instStarAddMonoidForall
Pi.instStarModuleForall
InvolutiveStar.toStar
StarMul.toStarModule
CommSemiring.toCommMonoid
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Matrix.map
β€”Matrix.ext
RingHomInvPair.ids
Function.smulCommClass
Algebra.to_smulCommClass
Pi.instStarModuleForall
StarMul.toStarModule
Pi.star_single
star_one

LinearMap.IntrinsicStar

Theorems

NameKindAssumesProvesValidatesDepends On
isSelfAdjoint_iff_map_star πŸ“–mathematicalβ€”IsSelfAdjoint
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.intrinsicStar
DFunLike.coe
LinearMap.instFunLike
WithConv.ofConv
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
β€”β€”
isSelfAdjoint_iff_toMatrix' πŸ“–mathematicalβ€”IsSelfAdjoint
WithConv
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.intrinsicStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
Pi.instStarAddMonoidForall
Pi.instStarModuleForall
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
InvolutiveStar.toStar
StarMul.toStarModule
CommSemiring.toCommMonoid
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
Matrix
LinearMap.addCommMonoid
Matrix.addCommMonoid
LinearMap.module
Function.smulCommClass
DistribMulAction.toMulAction
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
Matrix.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toMatrix'
WithConv.ofConv
β€”Pi.instStarModuleForall
StarMul.toStarModule
RingHomInvPair.ids
Function.smulCommClass
Algebra.to_smulCommClass
LinearEquiv.injective
LinearMap.toMatrix'_intrinsicStar
starLinearEquiv_eq_arrowCongr πŸ“–mathematicalβ€”starLinearEquiv
WithConv
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
WithConv.instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.intrinsicStarAddMonoid
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
WithConv.instModule
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Module.toDistribMulAction
LinearMap.intrinsicStarModule
LinearEquiv.trans
starRingEnd
RingHomCompTriple.ids
RingHomCompTriple.right_ids
RingHomInvPair.ids
RingHomInvPair.instStarRingEnd
WithConv.linearEquiv
LinearEquiv.arrowCongr
RingHomInvPair.triplesβ‚‚
LinearEquiv.symm
β€”RingHomInvPair.instStarRingEnd
smulCommClass_self
LinearMap.intrinsicStarModule

Matrix

Theorems

NameKindAssumesProvesValidatesDepends On
intrinsicStar_toLin' πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.intrinsicStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
Pi.instStarAddMonoidForall
Pi.instStarModuleForall
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
InvolutiveStar.toStar
StarMul.toStarModule
CommSemiring.toCommMonoid
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
WithConv.toConv
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
Matrix
addCommMonoid
LinearMap.addCommMonoid
module
LinearMap.module
Function.smulCommClass
DistribMulAction.toMulAction
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toLin'
map
β€”Pi.instStarModuleForall
StarMul.toStarModule
RingHomInvPair.ids
Function.smulCommClass
Algebra.to_smulCommClass
LinearEquiv.injective
LinearMap.toMatrix'_intrinsicStar
LinearMap.toMatrix'_toLin'

Matrix.IntrinsicStar

Theorems

NameKindAssumesProvesValidatesDepends On
isSelfAdjoint_toLin'_iff πŸ“–mathematicalβ€”IsSelfAdjoint
WithConv
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.intrinsicStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
Pi.instStarAddMonoidForall
Pi.instStarModuleForall
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
InvolutiveStar.toStar
StarMul.toStarModule
CommSemiring.toCommMonoid
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
WithConv.toConv
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
Matrix
Matrix.addCommMonoid
LinearMap.addCommMonoid
Matrix.module
LinearMap.module
Function.smulCommClass
DistribMulAction.toMulAction
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Matrix.toLin'
β€”Pi.instStarModuleForall
StarMul.toStarModule
RingHomInvPair.ids
Function.smulCommClass
Algebra.to_smulCommClass
Matrix.intrinsicStar_toLin'
EquivLike.toEmbeddingLike

Module.End

Theorems

NameKindAssumesProvesValidatesDepends On
isUnit_intrinsicStar_iff πŸ“–mathematicalβ€”IsUnit
Module.End
instMonoid
WithConv.ofConv
Star.star
WithConv
LinearMap.intrinsicStar
β€”IsUnit.intrinsicStar
star_star
mem_eigenspace_intrinsicStar_iff πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
eigenspace
WithConv.ofConv
Module.End
Star.star
WithConv
LinearMap.intrinsicStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”StarModule.star_smul
spectrum_intrinsicStar πŸ“–mathematicalβ€”spectrum
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instRing
instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
WithConv.ofConv
Star.star
WithConv
LinearMap.intrinsicStar
Set
InvolutiveStar.toStar
Set.instInvolutiveStar
β€”Set.ext
smulCommClass_self
IsScalarTower.left
Algebra.algebraMap_eq_smul_one
isUnit_intrinsicStar_iff
star_sub
StarModule.star_smul
LinearMap.intrinsicStarModule
LinearMap.intrinsicStar_id
star_star

Module.End.IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
intrinsicStar πŸ“–mathematicalIsUnit
Module.End
Module.End.instMonoid
WithConv.ofConv
Star.star
WithConv
LinearMap.intrinsicStar
β€”Units.isUnit

Module.End.Units

Definitions

NameCategoryTheorems
intrinsicStar πŸ“–CompOpβ€”

Pi

Definitions

NameCategoryTheorems
convIntrinsicStarRingCommSemiring πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
intrinsicStar_comul πŸ“–mathematicalStarModule
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
StarRing.toStarAddMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Star.star
WithConv
LinearMap
RingHom.id
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.intrinsicStar
TensorProduct.instStarAddMonoid
TensorProduct.instStarModule
WithConv.toConv
CoalgebraStruct.comul
LinearMap.comp
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
TensorProduct.comm
addCommMonoid
module
instStarAddMonoidForall
instStarModuleForall
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
instCoalgebraStruct
β€”TensorProduct.instStarModule
RingHomCompTriple.ids
RingHomInvPair.ids
WithConv.ext
instStarModuleForall
LinearMap.pi_ext'
Finite.of_fintype
LinearMap.ext
star_single
comul_single
TensorProduct.star_map_apply_eq_map_intrinsicStar
TensorProduct.map_comm
LinearMap.intrinsicStar_single
intrinsicStar_comul_commSemiring πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
module
Semiring.toModule
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.intrinsicStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
instStarAddMonoidForall
instStarModuleForall
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
InvolutiveStar.toStar
StarMul.toStarModule
CommSemiring.toCommMonoid
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
TensorProduct.instStarAddMonoid
TensorProduct.instStarModule
WithConv.toConv
CoalgebraStruct.comul
instCoalgebraStruct
Coalgebra.toCoalgebraStruct
CommSemiring.toCoalgebra
LinearMap.comp
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
Function.module
TensorProduct.comm
β€”intrinsicStar_comul
StarMul.toStarModule
WithConv.ext
TensorProduct.instStarModule
RingHomCompTriple.ids
RingHomInvPair.ids
LinearMap.ext_ring
star_one
Coalgebra.comm_comp_comul
CommSemiring.instIsCocomm

StarHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
isSelfAdjoint πŸ“–mathematicalβ€”IsSelfAdjoint
WithConv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.intrinsicStar
WithConv.toConv
SemilinearMapClass.semilinearMap
β€”IntrinsicStar.StarHomClass.isSelfAdjoint

TensorProduct

Theorems

NameKindAssumesProvesValidatesDepends On
intrinsicStar_map πŸ“–mathematicalβ€”Star.star
WithConv
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.intrinsicStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
instStarAddMonoid
instStarModule
WithConv.toConv
map
WithConv.ofConv
β€”WithConv.ext
instStarModule
ext'
star_map_apply_eq_map_intrinsicStar πŸ“–mathematicalβ€”Star.star
TensorProduct
instStar
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
addCommMonoid
instModule
LinearMap.instFunLike
map
WithConv.ofConv
WithConv
LinearMap.intrinsicStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
β€”instStarModule
star_star
intrinsicStar_map

---

← Back to Index